16 research outputs found

    Expanding global access to radiotherapy

    Get PDF
    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US26⋅6billioninlow−incomecountries,26·6 billion in low-income countries, 62·6 billion in lower-middle-income countries, and 94⋅8billioninupper−middle−incomecountries,whichamountsto94·8 billion in upper-middle-income countries, which amounts to 184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: 14⋅1billioninlow−income,14·1 billion in low-income, 33·3 billion in lower-middle-income, and 49⋅4billioninupper−middle−incomecountries−atotalof49·4 billion in upper-middle-income countries-a total of 96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of 278⋅1billionin2015−35(278·1 billion in 2015-35 (265·2 million in low-income countries, 38⋅5billioninlower−middle−incomecountries,and38·5 billion in lower-middle-income countries, and 239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even greater total benefit of 365⋅4billion(365·4 billion (12·8 billion in low-income countries, 67⋅7billioninlower−middle−incomecountries,and67·7 billion in lower-middle-income countries, and 284·7 billion in upper-middle-income countries). The returns, by the human-capital approach, are projected to be less with the nominal cost model, amounting to 16⋅9billionin2015−35(−16·9 billion in 2015-35 (-14·9 billion in low-income countries; -18⋅7billioninlower−middle−incomecountries,and18·7 billion in lower-middle-income countries, and 50·5 billion in upper-middle-income countries). The returns with the efficiency model were projected to be greater, however, amounting to 104⋅2billion(−104·2 billion (-2·4 billion in low-income countries, 10⋅7billioninlower−middle−incomecountries,and10·7 billion in lower-middle-income countries, and 95·9 billion in upper-middle-income countries). Our results provide compelling evidence that investment in radiotherapy not only enables treatment of large numbers of cancer cases to save lives, but also brings positive economic benefits

    Clinical relevance of contextual factors as triggers of placebo and nocebo effects in musculoskeletal pain

    Full text link

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Global Task Force on Radiotherapy for Cancer Control.

    No full text
    Cancer is an immense, fast-growing challenge to health and health systems worldwide. Previously thought to be restricted to high-income populations, it is now also recognised as an emerging and critical issue for low-income and middle-income countries. Although the challenge of cancer control in low-income and middle-income countries has been highlighted before,1 a comprehensive, integrated and global health system response was first forged with the work of the Global Task Force on Expanded Access to Cancer Care and Control, which began in 2009

    Radiotherapy for breast cancer: The predictable consequences of an unmet need

    No full text
    Radiotherapy has had a transformative impact on the treatment of breast cancer, but is unavailable to the majority of breast cancer patients in low- and middle-income countries. In these settings, where many women present with advanced disease at an age when they are often the primary caregiver for their families, the lack of access to radiotherapy is particularly devastating. Until recently, this disparity has been largely neglected in the medical literature and it had been difficult to convince governments, industry, and policymakers of the importance of investing in radiotherapy, as well as broader cancer control strategies, in low-resource settings. The Lancet Radiotherapy Commission report published in 2015 challenged many assumptions about the affordability of radiotherapy treatment. Data from the Commission is presented here to support radiotherapy investment for breast cancer and discuss how the morbidity and premature mortality among adult women caused by breast cancer has a huge detrimental effect on both the health sector and the economy. •Radiation therapy has had a transformative impact on breast cancer treatment.•Enormous worldwide inequalities in access created high mortality rates in LMICs.•Young age of onset in LMICs also generated profound long-term economic effects.•Strong medical and economic case for RT as essential for breast cancer care in LMICs
    corecore