220 research outputs found

    Moyamoya disease in Hong Kong: natural history and surgical revascularization outcome

    Get PDF
    Free Paper 3Theme: Brain Attack: A New EraOBJECTIVE: Moya-moya disease (MMD) is an occlusive cerebral vasculopathy associated with high risk of recurrent ischemic and hemorrhagic events. Surgical revascularization had proven benefits in ischemic MMD but the role in hemorrhagic presentations is less clear. We studied the natural history of symptomatic MMD patients in Hong Kong and compared the long term ...postprin

    Role of CD56-expressing immature biliary epithelial cells in biliary atresia

    Get PDF
    published_or_final_versio

    Identification of a wide spectrum of ciliary gene mutations in nonsyndromic biliary atresia patients implicates ciliary dysfunction as a novel disease mechanism

    Get PDF
    Background: Biliary atresia (BA) is the most common obstructive cholangiopathy in neonates, often progressing to end-stage cirrhosis. BA pathogenesis is believed to be multifactorial, but the genetic contribution, especially for nonsyndromic BA (common form: > 85%) remains poorly defined. Methods: We conducted whole exome sequencing on 89 nonsyndromic BA trios to identify rare variants contributing to BA etiology. Functional evaluation using patients’ liver biopsies, human cell and zebrafish models were performed. Clinical impact on respiratory system was assessed with clinical evaluation, nasal nitric oxide (nNO), high speed video analysis and transmission electron microscopy. Findings: We detected rare, deleterious de novo or biallelic variants in liver-expressed ciliary genes in 31.5% (28/89) of the BA patients. Burden test revealed 2.6-fold (odds ratio (OR) [95% confidence intervals (CI)]= 2.58 [1.15–6.07], adjusted p = 0.034) over-representation of rare, deleterious mutations in liver-expressed ciliary gene set in patients compared to controls. Functional analyses further demonstrated absence of cilia in the BA livers with KIF3B and TTC17 mutations, and knockdown of PCNT, KIF3B and TTC17 in human control fibroblasts and cholangiocytes resulted in reduced number of cilia. Additionally, CRISPR/Cas9-engineered zebrafish knockouts of KIF3B, PCNT and TTC17 displayed reduced biliary flow. Abnormally low level of nNO was detected in 80% (8/10) of BA patients carrying deleterious ciliary mutations, implicating the intrinsic ciliary defects. Interpretation: Our findings support strong genetic susceptibility for nonsyndromic BA. Ciliary gene mutations leading to cholangiocyte cilia malformation and dysfunction could be a key biological mechanism in BA pathogenesis. Funding: The study is supported by General Research Fund, HMRF Commissioned Paediatric Research at HKCH and Li Ka Shing Faculty of Medicine Enhanced New Staff Start-up Fund

    Generation of NSE-MerCreMer Transgenic Mice with Tamoxifen Inducible Cre Activity in Neurons

    Get PDF
    To establish a genetic tool for conditional deletion or expression of gene in neurons in a temporally controlled manner, we generated a transgenic mouse (NSE-MerCreMer), which expressed a tamoxifen inducible type of Cre recombinase specifically in neurons. The tamoxifen inducible Cre recombinase (MerCreMer) is a fusion protein containing Cre recombinase with two modified estrogen receptor ligand binding domains at both ends, and is driven by the neural-specific rat neural specific enolase (NSE) promoter. A total of two transgenic lines were established, and expression of MerCreMer in neurons of the central and enteric nervous systems was confirmed. Transcript of MerCreMer was detected in several non-neural tissues such as heart, liver, and kidney in these lines. In the background of the Cre reporter mouse strain Rosa26R, Cre recombinase activity was inducible in neurons of adult NSE-MerCreMer mice treated with tamoxifen by intragastric gavage, but not in those fed with corn oil only. We conclude that NSE-MerCreMer lines will be useful for studying gene functions in neurons for the conditions that Cre-mediated recombination resulting in embryonic lethality, which precludes investigation of gene functions in neurons through later stages of development and in adult

    A randomized, controlled clinical trial: the effect of mindfulness-based cognitive therapy on generalized anxiety disorder among Chinese community patients: protocol for a randomized trial

    Get PDF
    <b>Background</b> Research suggests that an eight-week Mindfulness-Based Cognitive Therapy (MBCT) program may be effective in the treatment of generalized anxiety disorders. Our objective is to compare the clinical effectiveness of the MBCT program with a psycho-education programme and usual care in reducing anxiety symptoms in people suffering from generalized anxiety disorder.<p></p> <b>Methods and Design</b> A three armed randomized, controlled clinical trial including 9-month post-treatment follow-up is proposed. Participants screened positive using the Structure Clinical Interview for DSM-IV (SCID) for general anxiety disorder will be recruited from community-based clinics. 228 participants will be randomly allocated to the MBCT program plus usual care, psycho-education program plus usual care or the usual care group. Validated Chinese version of instruments measuring anxiety and worry symptoms, depression, quality of life and health service utilization will be used. Our primary end point is the change of anxiety and worry score (Beck Anxiety Inventory and Penn State Worry Scale) from baseline to the end of intervention. For primary analyses, treatment outcomes will be assessed by ANCOVA, with change in anxiety score as the baseline variable, while the baseline anxiety score and other baseline characteristics that significantly differ between groups will serve as covariates.<p></p> <b>Discussion</b> This is a first randomized controlled trial that compare the effectiveness of MBCT with an active control, findings will advance current knowledge in the management of GAD and the way that group intervention can be delivered and inform future research

    Id1 Interacts and Stabilizes the Epstein-Barr Virus Latent Membrane Protein 1 (LMP1) in Nasopharyngeal Epithelial Cells

    Get PDF
    The EBV-encoded latent membrane protein 1 (LMP1) functions as a constitutive active form of tumor necrosis factor receptor (TNFR) and activates multiple downstream signaling pathways similar to CD40 signaling in a ligand-independent manner. LMP1 expression in EBV-infected cells has been postulated to play an important role in pathogenesis of nasopharyngeal carcinoma. However, variable levels of LMP1 expression were detected in nasopharyngeal carcinoma. At present, the regulation of LMP1 levels in nasopharyngeal carcinoma is poorly understood. Here we show that LMP1 mRNAs are transcribed in an EBV-positive nasopharyngeal carcinoma (NPC) cell line (C666-1) and other EBV-negative nasopharyngeal carcinoma cells stably re-infected with EBV. The protein levels of LMP1 could readily be detected after incubation with proteasome inhibitor, MG132 suggesting that LMP1 protein is rapidly degraded via proteasome-mediated proteolysis. Interestingly, we observed that Id1 overexpression could stabilize LMP1 protein in EBV-infected cells. In contrary, Id1 knockdown significantly reduced LMP1 levels in cells. Co-immunoprecipitation studies revealed that Id1 interacts with LMP1 by binding to the CTAR1 domain of LMP1. N-terminal region of Id1 is required for the interaction with LMP1. Furthermore, binding of Id1 to LMP1 suppressed polyubiquitination of LMP1 and may be involved in stabilization of LMP1 in EBV-infected nasopharyngeal epithelial cells
    • …
    corecore