15 research outputs found

    Development and validation of a pulseNet standardized pulsed-field gel electrophoresis protocol for subtyping of vibrio cholerae

    No full text
    PulseNet is a network that utilizes standardized pulsed-field gel electrophoresis (PFGE) protocols with the purpose of conducting laboratory-based surveillance of foodborne pathogens. PulseNet standardized PFGE protocols are subject to rigorous testing during the developmental phase and careful evaluation during a validation process assessing its robustness and reproducibility in different laboratories. Here we describe the development and validation of a rapid PFGE protocol for subtyping Vibrio cholerae for use in PulseNet International activities. While the protocol was derived from the existing PulseNet protocol for Escherichia coli O157, various aspects of this protocol were optimized for use with V. cholerae, most notably a change of the primary and secondary restriction enzyme to SfiI and NotI, respectively, and the use of a two-block electrophoresis program. External validation of this protocol was undertaken through a collaboration between three PulseNet Asia Pacific laboratories (Public Health Laboratory Centre, Hong Kong, National Institute of Infectious Diseases, Japan, and International Center for Diarrhoeal Diseases Research-Bangladesh) and PulseNet USA. Comparison of PFGE patterns generated by each of the participating laboratories demonstrated that the protocol is robust and reproducible

    Serogroup, Virulence, and Genetic Traits of Vibrio parahaemolyticus in the Estuarine Ecosystem of Bangladesh▿

    No full text
    Forty-two strains of Vibrio parahaemolyticus were isolated from Bay of Bengal estuaries and, with two clinical strains, analyzed for virulence, phenotypic, and molecular traits. Serological analysis indicated O8, O3, O1, and K21 to be the major O and K serogroups, respectively, and O8:K21, O1:KUT, and O3:KUT to be predominant. The K antigen(s) was untypeable, and pandemic serogroup O3:K6 was not detected. The presence of genes toxR and tlh were confirmed by PCR in all but two strains, which also lacked toxR. A total of 18 (41%) strains possessed the virulence gene encoding thermostable direct hemolysin (TDH), and one had the TDH-related hemolysin (trh) gene, but not tdh. Ten (23%) strains exhibited Kanagawa phenomenon that surrogates virulence, of which six, including the two clinical strains, possessed tdh. Of the 18 tdh-positive strains, 17 (94%), including the two clinical strains, had the seromarker O8:K21, one was O9:KUT, and the single trh-positive strain was O1:KUT. None had the group-specific or ORF8 pandemic marker gene. DNA fingerprinting employing pulsed-field gel electrophoresis (PFGE) of SfiI-digested DNA and cluster analysis showed divergence among the strains. Dendrograms constructed using PFGE (SfiI) images from a soft database, including those of pandemic and nonpandemic strains of diverse geographic origin, however, showed that local strains formed a cluster, i.e., “clonal cluster,” as did pandemic strains of diverse origin. The demonstrated prevalence of tdh-positive and diarrheagenic serogroup O8:K21 strains in coastal villages of Bangladesh indicates a significant human health risk for inhabitants

    Evaluation and Validation of a PulseNet Standardized Pulsed-Field Gel Electrophoresis Protocol for Subtyping Vibrio parahaemolyticus: an International Multicenter Collaborative Study▿

    No full text
    The pandemic spread of Vibrio parahaemolyticus is an international public health issue. Because of the outbreak potential of the organism, it is critical to establish an internationally recognized molecular subtyping protocol for V. parahaemolyticus that is both rapid and robust as a means to monitor its further spread and to guide control measures in combination with epidemiologic data. Here we describe the results of a multicenter, multicountry validation of a new PulseNet International standardized V. parahaemolyticus pulsed-field gel electrophoresis (PFGE) protocol. The results are from a composite analysis of 36 well-characterized V. parahaemolyticus isolates from six participating laboratories, and the isolates represent predominant serotypes and various genotypes isolated from different geographic regions and time periods. The discriminatory power is very high, as 34 out of 36 sporadic V. parahaemolyticus strains tested fell into 34 distinguishable PFGE groups when the data obtained with two restriction enzymes (SfiI and NotI) were combined. PFGE was further able to cluster members of known pandemic serogroups. The study also identified quality measures which may affect the performance of the protocol. Nonadherence to the recommended procedure may lead to high background in the PFGE gel patterns, partial digestion, and poor fragment resolution. When these quality measures were implemented, the PulseNet V. parahaemolyticus protocol was found to be both robust and reproducible among the collaborating laboratories
    corecore