963 research outputs found

    Gravitational Properties of Monopole Spacetimes Near the Black Hole Threshold

    Full text link
    Although nonsingular spacetimes and those containing black holes are qualitatively quite different, there are continuous families of configurations that connect the two. In this paper we use self-gravitating monopole solutions as tools for investigating the transition between these two types of spacetimes. We show how causally distinct regions emerge as the black hole limit is achieved, even though the measurements made by an external observer vary continuously. We find that near-critical solutions have a naturally defined entropy, despite the absence of a true horizon, and that this has a clear connection with the Hawking-Bekenstein entropy. We find that certain classes of near-critical solutions display naked black hole behavior, although they are not truly black holes at all. Finally, we present a numerical simulation illustrating how an incident pulse of matter can induce the dynamical collapse of a monopole into an extremal black hole. We discuss the implications of this process for the third law of black hole thermodynamics.Comment: 23 pages, 4 figures RevTe

    Constraints on alternative models to dark energy

    Full text link
    The recent observations of type Ia supernovae strongly support that the universe is accelerating now and decelerated in the recent past. This may be the evidence of the breakdown of the standard Friemann equation. We consider a general modified Friedmann equation. Three different models are analyzed in detail. The current supernovae data and the Wilkinson microwave anisotropy probe data are used to constrain these models. A detailed analysis of the transition from the deceleration phase to the acceleration phase is also performed.Comment: 10 pages, 1 figure, revtex

    Infra-red modification of gravity from asymmetric branes

    Full text link
    We consider a single Minkowski brane sandwiched in between two copies of anti-de Sitter space. We allow the bulk Planck mass and cosmological constant to differ on either side of the brane. Linearised perturbations about this background reveal that gravity can be modified in the infra-red. At intermediate scales, the braneworld propagator mimics four-dimensional GR in that it has the correct momentum dependance. However it has the wrong tensor structure. Beyond a source dependant scale, we show that quadratic brane bending contributions become important, and conspire to correct the tensor structure of the propagator. We argue that even higher order terms can consistently be ignored up to very high energies, and suggest that there is no problem with strong coupling. We also consider scalar and vector perturbations in the bulk, checking for scalar ghosts.Comment: Version appearing in CQ

    Non-Abelian Monopole and Dyon Solutions in a Modified Einstein-Yang-Mills-Higgs System

    Get PDF
    We have studied a modified Yang-Mills-Higgs system coupled to Einstein gravity. The modification of the Einstein-Hilbert action involves a direct coupling of the Higgs field to the scalar curvature. In this modified system we are able to write a Bogomol'nyi type condition in curved space and demonstrate that the positive static energy functional is bounded from below. We then investigate non-Abelian sperically symmetric static solutions in a similar fashion to the `t Hooft-Polyakov monopole. After reviewing previously studied monopole solutions of this type, we extend the formalism to included electric charge and we present dyon solutions.Comment: 18 pages LaTeX, 7 eps-figure

    Celebrating and Building Our Successes, One Brick at a Time: Lessons Learned From Firsts at a 21st Century Predominantly White University

    Get PDF
    This session captures opportunities, challenges, and celebrations in the recruitment, retention, and induction of persons of color throughout the higher education spectrum. Doctoral students, junior and senior faculty will share first person accounts of their journey. Each of the individuals represents a specific first in their discipline, program, or department

    Strong Coupling vs. 4-D Locality in Induced Gravity

    Full text link
    We re-examine the problem of strong coupling in a regularized version of DGP (or ``brane-induced'') gravity. We find that the regularization of ref. hep-th/0304148 differs from DGP in that it does not exhibit strong coupling or ghosts up to cubic order in the interactions. We suggest that the nonlocal nature of the theory, when written in terms of the 4-D metric, is a plausible reason for this phenomenon. Finally, we briefly discuss the possible behavior of the model at higher-order in perturbation theory.Comment: 19 pages, accepted for publication in PR

    A Polarization Pursuers' Guide

    Get PDF
    We calculate the detectability of the polarization of the cosmic microwave background (CMB) as a function of the sky coverage, angular resolution, and instrumental sensitivity for a hypothetical experiment. We consider the gradient component of the polarization from density perturbations (scalar modes) and the curl component from gravitational waves (tensor modes). We show that the amplitude (and thus the detectability) of the polarization from density perturbations is roughly the same in any model as long as the model fits the big-bang-nucleosynthesis (BBN) baryon density and degree-scale anisotropy measurements. The degree-scale polarization is smaller (and accordingly more difficult to detect) if the baryon density is higher. In some cases, the signal-to-noise for polarization (both from scalar and tensor modes) may be improved in a fixed-time experiment with a smaller survey area.Comment: 18 pages, 6 figure
    corecore