8 research outputs found

    Constraints on alternative models to dark energy

    Full text link
    The recent observations of type Ia supernovae strongly support that the universe is accelerating now and decelerated in the recent past. This may be the evidence of the breakdown of the standard Friemann equation. We consider a general modified Friedmann equation. Three different models are analyzed in detail. The current supernovae data and the Wilkinson microwave anisotropy probe data are used to constrain these models. A detailed analysis of the transition from the deceleration phase to the acceleration phase is also performed.Comment: 10 pages, 1 figure, revtex

    Infra-red modification of gravity from asymmetric branes

    Full text link
    We consider a single Minkowski brane sandwiched in between two copies of anti-de Sitter space. We allow the bulk Planck mass and cosmological constant to differ on either side of the brane. Linearised perturbations about this background reveal that gravity can be modified in the infra-red. At intermediate scales, the braneworld propagator mimics four-dimensional GR in that it has the correct momentum dependance. However it has the wrong tensor structure. Beyond a source dependant scale, we show that quadratic brane bending contributions become important, and conspire to correct the tensor structure of the propagator. We argue that even higher order terms can consistently be ignored up to very high energies, and suggest that there is no problem with strong coupling. We also consider scalar and vector perturbations in the bulk, checking for scalar ghosts.Comment: Version appearing in CQ

    Ghost-free braneworld bigravity

    Full text link
    We consider a generalisation of the DGP model, by adding a second brane with localised curvature, and allowing for a bulk cosmological constant and brane tensions. We study radion and graviton fluctuations in detail, enabling us to check for ghosts and tachyons. By tuning our parameters accordingly, we find bigravity models that are free from ghosts and tachyons. These models will lead to large distance modifications of gravity that could be observable in the near future.Comment: Dedicated to the memory of Ian Kogan. Version to appear in Classical and Quantum Gravit

    Testing the Cosmological Constant as a Candidate for Dark Energy

    Get PDF
    It may be difficult to single out the best model of dark energy on the basis of the existing and planned cosmological observations, because many different models can lead to similar observational consequences. However, each particular model can be studied and either found consistent with observations or ruled out. In this paper, we concentrate on the possibility to test and rule out the simplest and by far the most popular of the models of dark energy, the theory described by general relativity with positive vacuum energy (the cosmological constant). We evaluate the conditions under which this model could be ruled out by the future observations made by the Supernova/Acceleration Probe SNAP (both for supernovae and weak lensing) and by the Planck Surveyor cosmic microwave background satellite.Comment: 6 pages, 2 figures, revtex

    Cosmic acceleration from asymmetric branes

    Full text link
    We consider a single 3-brane sitting in between two different five dimensional spacetimes. On each side of the brane, the bulk is a solution to Gauss-Bonnet gravity, although the bare cosmological constant, funda mental Planck scale, and Gauss-Bonnet coupling can differ. This asymmetry leads to weighted junction conditions across the brane and interesting brane cosmology. We focus on two special cases: a generalized Randall-Sundrum model without any Gauss-Bonnet terms, and a stringy model, without any bare cosmological constants, and positive Gauss-Bonnet coupling. Even though we assume there is no vacuum energy on the brane, we find late time de Sitter cosmologies can occur. Remarkably, in certain parameter regions, this acceleration is preceded by a period of matter/radiation domination, with H2ρH^2 \propto \rho, all the way back to nucleosynthesis.Comment: Version appearing in CQ

    Cosmological Evolution in 1/R-Gravity Theory

    Full text link
    Recently, corrections of the L(R)L(R) type to Einstein-Hilbert action that become important at small curvature are proposed. Those type of models intend to explain the observed cosmic acceleration without dark energy. We derive the full Modified Friedmann equation in the Palatini formulation of those modified gravity model of the L(R)L(R) type. Then, we discuss various cosmological predictions of the Modified Friedmann equation.Comment: 7 pages, 5 figures. Accepted for publication in Class.Quant.Gra

    Palatini formulation of the R1R^{-1}modified gravity with an additionally squared scalar curvature term

    Full text link
    In this paper by deriving the Modified Friedmann equation in the Palatini formulation of R2R^2 gravity, first we discuss the problem of whether in Palatini formulation an additional R2R^2 term in Einstein's General Relativity action can drive an inflation. We show that the Palatini formulation of R2R^2 gravity cannot lead to the gravity-driven inflation as in the metric formalism. If considering no zero radiation and matter energy densities, we obtain that only under rather restrictive assumption about the radiation and matter energy densities there will be a mild power-law inflation a(t)t2a(t)\sim t^2, which is obviously different from the original vacuum energy-like driven inflation. Then we demonstrate that in the Palatini formulation of a more generally modified gravity, i.e., the 1/R+R21/R+R^2 model that intends to explain both the current cosmic acceleration and early time inflation, accelerating cosmic expansion achieved at late Universe evolution times under the model parameters satisfying αβ\alpha\ll\beta.Comment: 14 pages, accepted for publication by CQ

    Modified Friedmann Equations in R1^{-1}-Modified Gravity

    Full text link
    Recently, corrections to Einstein-Hilbert action that become important at small curvature are proposed. We discuss the first order and second order approximations to the field equations derived by the Palatini variational principle. We work out the first and second order Modified Friedmann equations and present the upper redshift bounds when these approximations are valid. We show that the second order effects can be neglected on the cosmological predictions involving only the Hubble parameter itself, e.g. the various cosmological distances, but the second order effects can not be neglected in the predictions involving the derivatives of the Hubble parameter. Furthermore, the Modified Friedmann equations fit the SN Ia data at an acceptable level.Comment: 15 pages, 6 figures, v2: discussion added; v3: minor changes, accepted by Class. and Quan. Gra
    corecore