133 research outputs found

    Decomposed liver has a significantly adverse affect on the development rate of the blowfly Calliphora vicina

    Get PDF
    The development rate of immature Calliphora vicina reared on decomposed liver was significantly slower, by as much as 30 h (55.4 % of total development time) for mid-sized larvae, and 71 h (35.0 %) and 58 h (14.6 %) if using times to the onset of pupariation and eclosion, respectively, than those of immatures that developed on fresh whole pig's liver. Development rates of larvae reared on decomposed liver were also slower than those of larvae reared on minced pig's liver and frozen/thawed pig's liver. These results suggest that any estimate of minimum post-mortem interval may result in an over estimate if the blowflies used were developing on an already decomposed body.Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Semimetallic behavior in Heusler-type Ru2TaAl and thermoelectric performance improved by off-stoichiometry

    Get PDF
    We report a study of the temperature-dependent electrical resistivity, Seebeck coefficient, thermal conductivity, specific heat, and Al27 nuclear magnetic resonance (NMR) in Heusler-type Ru2TaAl, to shed light on its semimetallic behavior. While the temperature dependence of the electrical resistivity exhibits semiconductorlike behavior, the analysis of low-temperature specific heat reveals a residual Fermi-level density of states (DOS). Both observations can be realized by means of a semimetallic scenario with the Fermi energy located in the pseudogap of the electronic DOS. The NMR Knight shift and spin-lattice relaxation rate show activated behavior at higher temperatures, attributing to the thermally excited carriers across a pseudogap in Ru2TaAl. From the first-principles band structure calculations, we further provide a clear picture that an indirect overlap between electron and hole pockets is responsible for the formation of a pseudogap in the vicinity of the Fermi level of Ru2TaAl. In addition, an effort for improving the thermoelectric performance of Ru2TaAl has been made by investigating the thermoelectric properties of Ru1.95Ta1.05Al. We found significant enhancements in the electrical conductivity and Seebeck coefficient and marked reduction in the thermal conductivity via the off-stoichiomet ric approach. This leads to an increase in the figure-of-merit ZT value from 6.1×10-4 in Ru2TaAl to 3.4×10-3 in Ru1.95Ta1.05Al at room temperature. In this respect, a further improvement of thermoelectric performance based on Ru2TaAl through other off-stoichiometric attempts is highly probable

    Spin glass behavior in FeAl2

    Get PDF
    Journals published by the American Physical Society can be found at http://journals.aps.org/Magnetic and transport measurements indicate FeAl2 to be an ordered intermetallic spin glass, with canonical behavior including a susceptibility cusp at T-f = 35 K and frequency-dependent susceptibility below T-f. The field-cooled and zero-held-cooled magnetization diverge below T-f, with hysteresis characteristic of a spin glass. A resistivity minimum just above T-f is explained in terms of coherent magnetic scattering. This behavior is common to spin glasses with short-range interactions among f-electron moments and indicates a similar spin configuration in these materials

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit

    The Cosmological Constant

    Get PDF
    This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity (http://www.livingreviews.org/), December 199

    Chuanxiongzine relaxes isolated corpus cavernosum strips and raises intracavernous pressure in rabbits

    Get PDF
    It has been shown that there are many Chinese traditional herbals that can enhance sexual activity. Chuanxiongzine is a vasoactive ingredient that has been isolated and purified from Ligusticum chuanxiong Hort. In previous studies, it has been found that chuanxiongzine was effective in relaxing rabbit corpus cavernosum smooth muscle. We determined the effects of chuanxiongzine on relaxation of isolated corpus cavernosum strips in vitro and on increase of intracavernous pressure (ICP) in vivo in rabbits. Chuanxiongzine caused a concentration-dependent relaxation of phenylephrine precontracted isolated corpus cavernosum strips (EC50 1.58 × 10−4 mol l−1), which were endothelium independent and NO independent. However, the guanylyl cyclase inhibitor 1-H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one significantly shifted the chuanxiongzine concentration–response relationship to the right. Although there was no significant difference in the level of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) in isolated corpus cavernosum strips treated with chuanxiongzine or vehicle, chuanxiongzine caused a significant rise in the level of cGMP and cAMP in isolated corpus cavernosum strips pretreated with the activator of adenylyl cyclase forskolin and the source of NO sodium nitroprusside. In an in vivo study, chuanxiongzine dose-dependently raised ICP after the intracavernous injection of its cumulative doses (0.5, 1, 2 and 5 mg kg−1). The ICP increased from baseline to 19.1±3.7, 24.8±2.1, 30.2±4.8 and 39.7±6.1 mm Hg, respectively, and the duration of tumescence ranged from 8.5±2.8 to 22.9±7.3 min. Our results show that chuanxiongzine can relax isolated corpus cavernosum strips of rabbits in vitro and increase ICP of rabbits in vivo, which is neither endothelium dependent nor NO dependent, but may be partly mediated by the inhibition of cAMP phosphodiesterase or cGMP phosphodiesterase

    Inhibition of apoptosis in neuronal cells infected with Chlamydophila (Chlamydia) pneumoniae

    Get PDF
    Background Chlamydophila (Chlamydia) pneumoniae is an intracellular bacterium that has been identified within cells in areas of neuropathology found in Alzheimer disease (AD), including endothelia, glia, and neurons. Depending on the cell type of the host, infection by C. pneumoniae has been shown to influence apoptotic pathways in both pro- and anti-apoptotic fashions. We have hypothesized that persistent chlamydial infection of neurons may be an important mediator of the characteristic neuropathology observed in AD brains. Chronic and/or persistent infection of neuronal cells with C. pneumoniae in the AD brain may affect apoptosis in cells containing chlamydial inclusions. Results SK-N-MC neuroblastoma cells were infected with the respiratory strain of C. pneumoniae, AR39 at an MOI of 1. Following infection, the cells were either untreated or treated with staurosporine and then examined for apoptosis by labeling for nuclear fragmentation, caspase activity, and membrane inversion as indicated by annexin V staining. C. pneumoniae infection was maintained through 10 days post-infection. At 3 and 10 days post-infection, the infected cell cultures appeared to inhibit or were resistant to the apoptotic process when induced by staurosporine. This inhibition was demonstrated quantitatively by nuclear profile counts and caspase 3/7 activity measurements. Conclusion These data suggest that C. pneumoniae can sustain a chronic infection in neuronal cells by interfering with apoptosis, which may contribute to chronic inflammation in the AD brai

    Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses

    Get PDF
    Pressure-induced amorphous-to-amorphous configuration changes in Ca-Al metallic glasses (MGs) were studied by performing in-situ room-temperature high-pressure x-ray diffraction up to about 40 GPa. Changes in compressibility at about 18 GPa, 15.5 GPa and 7.5 GPa during compression are detected in Ca80Al20, Ca72.7Al27.3, and Ca66.4Al33.6 MGs, respectively, whereas no clear change has been detected in the Ca50Al50 MG. The transfer of s electrons into d orbitals under pressure, reported for the pressure-induced phase transformations in pure polycrystalline Ca, is suggested to explain the observation of an amorphous-to-amorphous configuration change in this Ca-Al MG system. Results presented here show that the pressure induced amorphous-to-amorphous configuration is not limited to f electron-containing MGs

    The Candida albicans Ku70 Modulates Telomere Length and Structure by Regulating Both Telomerase and Recombination

    Get PDF
    The heterodimeric Ku complex has been shown to participate in DNA repair and telomere regulation in a variety of organisms. Here we report a detailed characterization of the function of Ku70 in the diploid fungal pathogen Candida albicans. Both ku70 heterozygous and homozygous deletion mutants have a wild-type colony and cellular morphology, and are not sensitive to MMS or UV light. Interestingly, we observed complex effects of KU70 gene dosage on telomere lengths, with the KU70/ku70 heterozygotes exhibiting slightly shorter telomeres, and the ku70 null strain exhibiting long and heterogeneous telomeres. Analysis of combination mutants suggests that the telomere elongation in the ku70 null mutant is due mostly to unregulated telomerase action. In addition, elevated levels of extrachromosomal telomeric circles were detected in the null mutant, consistent with activation of aberrant telomeric recombination. Altogether, our observations point to multiple mechanisms of the Ku complex in telomerase regulation and telomere protection in C. albicans, and reveal interesting similarities and differences in the mechanisms of the Ku complex in disparate systems

    Zinc Overload Enhances APP Cleavage and Aβ Deposition in the Alzheimer Mouse Brain

    Get PDF
    BACKGROUND: Abnormal zinc homeostasis is involved in β-amyloid (Aβ) plaque formation and, therefore, the zinc load is a contributing factor in Alzheimer's disease (AD). However, the involvement of zinc in amyloid precursor protein (APP) processing and Aβ deposition has not been well established in AD animal models in vivo. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, APP and presenilin 1 (PS1) double transgenic mice were treated with a high dose of zinc (20 mg/ml ZnSO4 in drinking water). This zinc treatment increased APP expression, enhanced amyloidogenic APP cleavage and Aβ deposition, and impaired spatial learning and memory in the transgenic mice. We further examined the effects of zinc overload on APP processing in SHSY-5Y cells overexpressing human APPsw. The zinc enhancement of APP expression and cleavage was further confirmed in vitro. CONCLUSIONS/SIGNIFICANCE: The present data indicate that excess zinc exposure could be a risk factor for AD pathological processes, and alteration of zinc homeostasis is a potential strategy for the prevention and treatment of AD
    corecore