6 research outputs found

    Plasma ferritin concentration is positively associated with in vivo fatty acid mobilization and insulin resistance in obese women

    Full text link
    High rates of fatty acid (FA) mobilization from adipose tissue are associated with insulin resistance (IR) in obesity. In vitro evidence suggests that iron stimulates lipolysis in adipocytes, but whether iron is related to in vivo FA mobilization is unknown. We hypothesized that plasma ferritin concentration ([ferritin]), a marker of body iron stores, would be positively associated with FA mobilization. We measured [ferritin], the rate of appearance of FA in the systemic circulation (FA Ra; stable isotope dilution), key adipose tissue lipolytic proteins and IR (hyperinsulinaemicâ euglycaemic clamp) in 20 obese, premenopausal women. [Ferritin] was correlated with FA Ra (r = 0.65; P = 0.002) and IR (r = 0.57; P = 0.008); these relationships remained significant after controlling for body mass index and plasma [Câ reactive protein] (a marker of systemic inflammation) in multiple regression analyses. We then stratified subjects into tertiles based on [ferritin] to compare subjects with â Highâ ferritinâ versus â Lowâ ferritinâ . Plasma [hepcidin] was more than fivefold greater (P < 0.05) in the Highâ ferritin versus Lowâ ferritin group, but there was no difference in plasma [Câ reactive protein] between groups, indicating that the large difference in plasma [ferritin] reflects a difference in iron stores, not systemic inflammation. We found that FA Ra, adipose protein abundance of hormoneâ sensitive lipase and adipose triglyceride lipase, and IR were significantly greater in subjects with Highâ ferritin versus Lowâ ferritin (all P < 0.05). These data provide the first evidence linking iron and in vivo FA mobilization and suggest that elevated iron stores might contribute to IR in obesity by increasing systemic FA availability.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146491/1/eph12367_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146491/2/eph12367.pd

    Skeletal muscle ferritin abundance is tightly related to plasma ferritin concentration in adults with obesity

    Full text link
    Obesity is associated with complex perturbations to whole- body and tissue iron homeostasis. Recent evidence suggests a potentially important influence of iron storage in skeletal muscle on whole- body iron homeostasis, but this association is not clearly resolved. The primary aim of this study was to assess the relationship between whole- body and skeletal muscle iron stores by measuring the abundance of the key iron storage (ferritin) and import (transferrin receptor) proteins in skeletal muscle, as well as markers of whole- body iron homeostasis in men (n = 19) and women (n = 43) with obesity. Plasma ferritin concentration (a marker of whole- body iron stores) was highly correlated with muscle ferritin abundance (r = 0.77, P = 2 à  10- 13) and negatively associated with muscle transferrin receptor abundance (r = - 0.76, P = 1 à  10- 12). These relationships persisted when accounting for sex, age, BMI and plasma C- reactive protein concentration. In parallel with higher whole- body iron stores in our male versus female participants, men had 2.2- fold higher muscle ferritin abundance (P = 1 à  10- 4) compared with women. In accordance with lower muscle iron storage, women had 2.7- fold higher transferrin receptor abundance (P = 7 à  10- 10) compared with men. We conclude that muscle iron storage and import proteins are tightly and independently related to plasma ferritin concentration in adults with obesity, suggesting that skeletal muscle may be an underappreciated iron store.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163407/2/eph12853_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163407/1/eph12853.pd

    Acute endurance exercise increases Vegfa mRNA expression in adipose tissue of rats during the early stages of weight gain

    No full text
    The aim of this study was to determine the effects of acute exercise on key factors regulating angiogenesis in adipose tissue. Adipose tissue Vegf-a mRNA expression was upregulated immediately after acute exercise (pThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Skeletal muscle ferritin abundance is tightly related to plasma ferritin concentration in adults with obesity

    No full text
    Obesity is associated with complex perturbations to whole- body and tissue iron homeostasis. Recent evidence suggests a potentially important influence of iron storage in skeletal muscle on whole- body iron homeostasis, but this association is not clearly resolved. The primary aim of this study was to assess the relationship between whole- body and skeletal muscle iron stores by measuring the abundance of the key iron storage (ferritin) and import (transferrin receptor) proteins in skeletal muscle, as well as markers of whole- body iron homeostasis in men (n = 19) and women (n = 43) with obesity. Plasma ferritin concentration (a marker of whole- body iron stores) was highly correlated with muscle ferritin abundance (r = 0.77, P = 2 à  10- 13) and negatively associated with muscle transferrin receptor abundance (r = - 0.76, P = 1 à  10- 12). These relationships persisted when accounting for sex, age, BMI and plasma C- reactive protein concentration. In parallel with higher whole- body iron stores in our male versus female participants, men had 2.2- fold higher muscle ferritin abundance (P = 1 à  10- 4) compared with women. In accordance with lower muscle iron storage, women had 2.7- fold higher transferrin receptor abundance (P = 7 à  10- 10) compared with men. We conclude that muscle iron storage and import proteins are tightly and independently related to plasma ferritin concentration in adults with obesity, suggesting that skeletal muscle may be an underappreciated iron store.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163407/2/eph12853_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163407/1/eph12853.pd

    Exercise training decreases whole- body and tissue iron storage in adults with obesity

    Full text link
    The regulation of iron storage is crucial to human health, because both excess and deficient iron storage have adverse consequences. Recent studies suggest altered iron storage in adults with obesity, with increased iron accumulation in their liver and skeletal muscle. Exercise training increases iron use for processes such as red blood cell production and can lower whole- body iron stores in humans. However, the effects of exercise training on liver and muscle iron stores in adults with obesity have not been assessed. The aim of this study was to determine the effects of 12 weeks of exercise training on whole- body iron stores, liver iron content and the abundance of ferritin (the key iron storage protein) in skeletal muscle in adults with obesity. Twenty- two inactive adults (11 women and 11 men; age, 31 ± 6 years; body mass index, 33 ± 3 kg/m2) completed 12 weeks (four sessions/week) of either moderate- intensity continuous training (MICT; 45 min at 70% of maximal heart rate; n = 11) or high- intensity interval training (HIIT; 10 à  1 min at 90% of maximal heart rate, interspersed with 1 min active recovery; n = 11). Whole- body iron stores were lower after training, as indicated by decreased plasma concentrations of ferritin (P = 3 à  10- 5) and hepcidin (P = 0.02), without any change in C- reactive protein. Hepatic R2*, an index of liver iron content, was 6% lower after training (P = 0.06). Training reduced the skeletal muscle abundance of ferritin by 10% (P = 0.03), suggesting lower muscle iron storage. Interestingly, these adaptations were similar in MICT and HIIT groups. Our findings indicate that exercise training decreased iron storage in adults with obesity, which might have important implications for obese individuals with dysregulated iron homeostasis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/167108/1/eph12950_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/167108/2/eph12950.pd

    Exercise training remodels subcutaneous adipose tissue in adults with obesity even without weight loss

    Full text link
    Excessive adipose tissue mass underlies much of the metabolic health complications in obesity. Although exercise training is known to improve metabolic health in individuals with obesity, the effects of exercise training without weight loss on adipose tissue structure and metabolic function remain unclear. Thirty-six adults with obesity (body mass index = 33 ± 3 kg · m–2) were assigned to 12 weeks (4 days week–1) of either moderate-intensity continuous training (MICT; 70% maximal heart rate, 45 min; n = 17) or high-intensity interval training (HIIT; 90% maximal heart rate, 10 × 1 min; n = 19), maintaining their body weight throughout. Abdominal subcutaneous adipose tissue (aSAT) biopsy samples were collected once before and twice after training (1 day after last exercise and again 4 days later). Exercise training modified aSAT morphology (i.e. reduced fat cell size, increased collagen type 5a3, both P ≤ 0.05, increased capillary density, P = 0.05) and altered protein abundance of factors that regulate aSAT remodelling (i.e. reduced matrix metallopeptidase 9; P = 0.02; increased angiopoietin-2; P < 0.01). Exercise training also increased protein abundance of factors that regulate lipid metabolism (e.g. hormone sensitive lipase and fatty acid translocase; P ≤ 0.03) and key proteins involved in the mitogen-activated protein kinase pathway when measured the day after the last exercise session. However, most of these exercise-mediated changes were no longer significant 4 days after exercise. Importantly, MICT and HIIT induced remarkably similar adaptations in aSAT. Collectively, even in the absence of weight loss, 12 weeks of exercise training induced changes in aSAT structure, as well as factors that regulate metabolism and the inflammatory signal pathway in adults with obesity.Key pointsExercise training is well-known to improve metabolic health in obesity, although how exercise modifies the structure and metabolic function of adipose tissue, in the absence of weight loss, remains unclear.We report that both 12 weeks of moderate-intensity continuous training (MICT) and 12 weeks of high-intensity interval training (HIIT) induced modifications in adipose tissue structure and factors that regulate adipose tissue remodelling, metabolism and the inflammatory signal pathway in adults with obesity, even without weight loss (with no meaningful differences between MICT and HIIT).The modest modifications in adipose tissue structure in response to 12 weeks of MICT or HIIT did not lead to changes in the rate of fatty acid release from adipose tissue.These results expand our understanding about the effects of two commonly used exercise training prescriptions (MICT and HIIT) on adipose tissue remodelling that may lead to advanced strategies for improving metabolic health outcomes in adults with obesity.Abstract figure legend. Three months of moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) without weight loss induced similar structural and metabolic adaptations in subcutaneous adipose tissue in adults with obesity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/172245/1/tjp15006_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/172245/2/tjp15006-sup-0002-PeerReview.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/172245/3/tjp15006.pd
    corecore