6,682 research outputs found

    Microtubule dynamics depart from wormlike chain model

    Get PDF
    Thermal shape fluctuations of grafted microtubules were studied using high resolution particle tracking of attached fluorescent beads. First mode relaxation times were extracted from the mean square displacement in the transverse coordinate. For microtubules shorter than 10 um, the relaxation times were found to follow an L^2 dependence instead of L^4 as expected from the standard wormlike chain model. This length dependence is shown to result from a complex length dependence of the bending stiffness which can be understood as a result of the molecular architecture of microtubules. For microtubules shorter than 5 um, high drag coefficients indicate contributions from internal friction to the fluctuation dynamics.Comment: 4 pages, 4 figures. Updated content, added reference, corrected typo

    On the Wake Structure in Streaming Complex Plasmas

    Get PDF
    The theoretical description of complex (dusty) plasmas requires multiscale concepts that adequately incorporate the correlated interplay of streaming electrons and ions, neutrals, and dust grains. Knowing the effective dust-dust interaction, the multiscale problem can be effectively reduced to a one-component plasma model of the dust subsystem. The goal of the present publication is a systematic evaluation of the electrostatic potential distribution around a dust grain in the presence of a streaming plasma environment by means of two complementary approaches: (i) a high precision computation of the dynamically screened Coulomb potential from the dynamic dielectric function, and (ii) full 3D particle-in-cell simulations, which self-consistently include dynamical grain charging and non-linear effects. The applicability of these two approaches is addressed

    An investigation of the formation and line properties of MgH in 3D hydrodynamical model stellar atmospheres

    Get PDF
    Studies of the isotopic composition of magnesium in cool stars have so far relied upon the use of one-dimensional (1D) model atmospheres. Since the isotopic ratios derived are based on asymmetries of optical MgH lines, it is important to test the impact from other effects affecting line asymmetries, like stellar convection. Here, we present a theoretical investigation of the effects of including self-consistent modeling of convection. Using spectral syntheses based on 3D hydrodynamical CO5^5BOLD models of dwarfs (4000KTeff5160K\lesssim T_\mathrm{eff}\lesssim5160K, 4.04.0\leqlog(g)4.5\leq4.5, 3.0[Fe/H]1.0-3.0\leq[\mathrm{Fe/H}]\leq-1.0) and giants (Teff4000T_\mathrm{eff}\sim4000K, log(g)=1.5=1.5, 3.0[Fe/H]1.0-3.0\leq[\mathrm{Fe/H}]\leq-1.0), we perform a detailed analysis comparing 3D and 1D syntheses. We describe the impact on the formation and behavior of MgH lines from using 3D models, and perform a qualitative assessment of the systematics introduced by the use of 1D syntheses. Using 3D model atmospheres significantly affect the strength of the MgH lines, especially in dwarfs, with 1D syntheses requiring an abundance correction of up to +0.69 dex largest for our 5000K models. The corrections are correlated with TeffT_\mathrm{eff} and are also affected by the metallicity. The shape of the strong 24^{24}MgH component in the 3D syntheses is poorly reproduced in 1D. This results in 1D syntheses underestimating 25^{25}MgH by up to 5\sim5 percentage points and overestimating 24^{24}MgH by a similar amount for dwarfs. This discrepancy increases with decreasing metallicity. 26^{26}MgH is recovered relatively well, with the largest difference being 2\sim2 percentage points. The use of 3D for giants has less impact, due to smaller differences in the atmospheric structure and a better reproduction of the line shape in 1D.Comment: 20 pages, 15 figures, accepted for publication in Ap

    Mode identification of Pulsating White Dwarfs using the HST

    Full text link
    We have obtained time-resolved ultraviolet spectroscopy for the pulsating DAV stars G226-29 and G185-32, and for the pulsating DBV star PG1351+489 with the Hubble Space Telescope Faint Object Spectrograph, to compare the ultraviolet to the optical pulsation amplitude and determine the pulsation indices. We find that for essentially all observed pulsation modes, the amplitude rises to the ultraviolet as the theoretical models predict for l=1 non-radial g-modes. We do not find any pulsation mode visible only in the ultraviolet, nor any modes whose phase flips by 180 degrees; in the ultraviolet, as would be expected if high l pulsations were excited. We find one periodicity in the light curve of G185-32, at 141 s, which does not fit theoretical models for the change of amplitude with wavelength of g-mode pulsations.Comment: Accepted for publication in the Astrophysical Journal, Aug 200

    Single-photon optomechanics in the strong coupling regime

    Full text link
    We give a theoretical description of a coherently driven opto-mechanical system with a single added photon. The photon source is modeled as a cavity which initially contains one photon and which is irreversibly coupled to the opto-mechanical system. We show that the probability for the additional photon to be emitted by the opto-mechanical cavity will exhibit oscillations under a Lorentzian envelope, when the driven interaction with the mechanical resonator is strong enough. Our scheme provides a feasible route towards quantum state transfer between optical photons and micromechanical resonators.Comment: 14 pages, 6 figure

    Subdynamics as a mechanism for objective description

    Get PDF
    The relationship between microsystems and macrosystems is considered in the context of quantum field formulation of statistical mechanics: it is argued that problems on foundations of quantum mechanics can be solved relying on this relationship. This discussion requires some improvement of non-equilibrium statistical mechanics that is briefly presented.Comment: latex, 15 pages. Paper submitted to Proc. Conference "Mysteries, Puzzles And Paradoxes In Quantum Mechanics, Workshop on Entanglement And Decoherence, Palazzo Feltrinelli, Gargnano, Garda Lake, Italy, 20-25 September, 199

    The CoRoT target HD 49933: 2- Comparison of theoretical mode amplitudes with observations

    Full text link
    From the seismic data obtained by CoRoT for the star HD 49933 it is possible, as for the Sun, to constrain models of the excitation of acoustic modes by turbulent convection. We compare a stochastic excitation model described in Paper I (arXiv:0910.4027) with the asteroseismology data for HD 49933, a star that is rather metal poor and significantly hotter than the Sun. Using the mode linewidths measured by CoRoT for HD 49933 and the theoretical mode excitation rates computed in Paper I, we derive the expected surface velocity amplitudes of the acoustic modes detected in HD 49933. Using a calibrated quasi-adiabatic approximation relating the mode amplitudes in intensity to those in velocity, we derive the expected values of the mode amplitude in intensity. Our amplitude calculations are within 1-sigma error bars of the mode surface velocity spectrum derived with the HARPS spectrograph. The same is found with the mode amplitudes in intensity derived for HD 49933 from the CoRoT data. On the other hand, at high frequency, our calculations significantly depart from the CoRoT and HARPS measurements. We show that assuming a solar metal abundance rather than the actual metal abundance of the star would result in a larger discrepancy with the seismic data. Furthermore, calculations that assume the ``new'' solar chemical mixture are in better agreement with the seismic data than those that assume the ``old'' solar chemical mixture. These results validate, in the case of a star significantly hotter than the Sun and Alpha Cen A, the main assumptions in the model of stochastic excitation. However, the discrepancies seen at high frequency highlight some deficiencies of the modelling, whose origin remains to be understood.Comment: 8 pages, 3 figures (B-W and color), accepted for publication in Astronomy & Astrophysics. Corrected typo in Eq. (4). Updated references. Language improvement

    Conformal Field Theory Approach to the 2-Impurity Kondo Problem: Comparison with Numerical Renormalization Group Results

    Full text link
    Numerical renormalization group and conformal field theory work indicate that the two impurity Kondo Hamiltonian has a non-Fermi liquid critical point separating the Kondo-screening phase from the inter-impurity singlet phase when particle-hole (P-H) symmetry is maintained. We clarify the circumstances under which this critical point occurs, pointing out that there are two types of P-H symmetry. Only one of them guarantees the occurance of the critical point. Much of the previous numerical work was done on models with the other type of P-H symmetry. We analyse this critical point using the boundary conformal field theory technique. The finite-size spectrum is presented in detail and compared with about 50 energy levels obtained using the numerical renormalization group. Various Green's functions, general renormalization group behaviour, and a hidden SO(7)SO(7) are analysed.Comment: 38 pages, RevTex. 2 new sections clarify the circumstances under which a model will exhibit the non-trivial critical point (hence potentially resolving disagreements with other Authors) and explain the hidden SO(7) symmetry of the model, relating it to an alternative approach of Sire et al. and Ga

    Symmetric Strategy Improvement

    Full text link
    Symmetry is inherent in the definition of most of the two-player zero-sum games, including parity, mean-payoff, and discounted-payoff games. It is therefore quite surprising that no symmetric analysis techniques for these games exist. We develop a novel symmetric strategy improvement algorithm where, in each iteration, the strategies of both players are improved simultaneously. We show that symmetric strategy improvement defies Friedmann's traps, which shook the belief in the potential of classic strategy improvement to be polynomial
    corecore