6,682 research outputs found
Microtubule dynamics depart from wormlike chain model
Thermal shape fluctuations of grafted microtubules were studied using high
resolution particle tracking of attached fluorescent beads. First mode
relaxation times were extracted from the mean square displacement in the
transverse coordinate. For microtubules shorter than 10 um, the relaxation
times were found to follow an L^2 dependence instead of L^4 as expected from
the standard wormlike chain model. This length dependence is shown to result
from a complex length dependence of the bending stiffness which can be
understood as a result of the molecular architecture of microtubules. For
microtubules shorter than 5 um, high drag coefficients indicate contributions
from internal friction to the fluctuation dynamics.Comment: 4 pages, 4 figures. Updated content, added reference, corrected typo
On the Wake Structure in Streaming Complex Plasmas
The theoretical description of complex (dusty) plasmas requires multiscale
concepts that adequately incorporate the correlated interplay of streaming
electrons and ions, neutrals, and dust grains. Knowing the effective dust-dust
interaction, the multiscale problem can be effectively reduced to a
one-component plasma model of the dust subsystem. The goal of the present
publication is a systematic evaluation of the electrostatic potential
distribution around a dust grain in the presence of a streaming plasma
environment by means of two complementary approaches: (i) a high precision
computation of the dynamically screened Coulomb potential from the dynamic
dielectric function, and (ii) full 3D particle-in-cell simulations, which
self-consistently include dynamical grain charging and non-linear effects. The
applicability of these two approaches is addressed
An investigation of the formation and line properties of MgH in 3D hydrodynamical model stellar atmospheres
Studies of the isotopic composition of magnesium in cool stars have so far
relied upon the use of one-dimensional (1D) model atmospheres. Since the
isotopic ratios derived are based on asymmetries of optical MgH lines, it is
important to test the impact from other effects affecting line asymmetries,
like stellar convection. Here, we present a theoretical investigation of the
effects of including self-consistent modeling of convection. Using spectral
syntheses based on 3D hydrodynamical COBOLD models of dwarfs
(4000K, log(g),
) and giants (K,
log(g), ), we perform a detailed
analysis comparing 3D and 1D syntheses.
We describe the impact on the formation and behavior of MgH lines from using
3D models, and perform a qualitative assessment of the systematics introduced
by the use of 1D syntheses.
Using 3D model atmospheres significantly affect the strength of the MgH
lines, especially in dwarfs, with 1D syntheses requiring an abundance
correction of up to +0.69 dex largest for our 5000K models. The corrections are
correlated with and are also affected by the metallicity. The
shape of the strong MgH component in the 3D syntheses is poorly
reproduced in 1D. This results in 1D syntheses underestimating MgH by up
to percentage points and overestimating MgH by a similar amount
for dwarfs. This discrepancy increases with decreasing metallicity. MgH
is recovered relatively well, with the largest difference being
percentage points. The use of 3D for giants has less impact, due to smaller
differences in the atmospheric structure and a better reproduction of the line
shape in 1D.Comment: 20 pages, 15 figures, accepted for publication in Ap
Mode identification of Pulsating White Dwarfs using the HST
We have obtained time-resolved ultraviolet spectroscopy for the pulsating DAV
stars G226-29 and G185-32, and for the pulsating DBV star PG1351+489 with the
Hubble Space Telescope Faint Object Spectrograph, to compare the ultraviolet to
the optical pulsation amplitude and determine the pulsation indices. We find
that for essentially all observed pulsation modes, the amplitude rises to the
ultraviolet as the theoretical models predict for l=1 non-radial g-modes. We do
not find any pulsation mode visible only in the ultraviolet, nor any modes
whose phase flips by 180 degrees; in the ultraviolet, as would be expected if
high l pulsations were excited. We find one periodicity in the light curve of
G185-32, at 141 s, which does not fit theoretical models for the change of
amplitude with wavelength of g-mode pulsations.Comment: Accepted for publication in the Astrophysical Journal, Aug 200
Single-photon optomechanics in the strong coupling regime
We give a theoretical description of a coherently driven opto-mechanical
system with a single added photon. The photon source is modeled as a cavity
which initially contains one photon and which is irreversibly coupled to the
opto-mechanical system. We show that the probability for the additional photon
to be emitted by the opto-mechanical cavity will exhibit oscillations under a
Lorentzian envelope, when the driven interaction with the mechanical resonator
is strong enough. Our scheme provides a feasible route towards quantum state
transfer between optical photons and micromechanical resonators.Comment: 14 pages, 6 figure
Subdynamics as a mechanism for objective description
The relationship between microsystems and macrosystems is considered in the
context of quantum field formulation of statistical mechanics: it is argued
that problems on foundations of quantum mechanics can be solved relying on this
relationship. This discussion requires some improvement of non-equilibrium
statistical mechanics that is briefly presented.Comment: latex, 15 pages. Paper submitted to Proc. Conference "Mysteries,
Puzzles And Paradoxes In Quantum Mechanics, Workshop on Entanglement And
Decoherence, Palazzo Feltrinelli, Gargnano, Garda Lake, Italy, 20-25
September, 199
The CoRoT target HD 49933: 2- Comparison of theoretical mode amplitudes with observations
From the seismic data obtained by CoRoT for the star HD 49933 it is possible,
as for the Sun, to constrain models of the excitation of acoustic modes by
turbulent convection. We compare a stochastic excitation model described in
Paper I (arXiv:0910.4027) with the asteroseismology data for HD 49933, a star
that is rather metal poor and significantly hotter than the Sun. Using the mode
linewidths measured by CoRoT for HD 49933 and the theoretical mode excitation
rates computed in Paper I, we derive the expected surface velocity amplitudes
of the acoustic modes detected in HD 49933. Using a calibrated quasi-adiabatic
approximation relating the mode amplitudes in intensity to those in velocity,
we derive the expected values of the mode amplitude in intensity. Our amplitude
calculations are within 1-sigma error bars of the mode surface velocity
spectrum derived with the HARPS spectrograph. The same is found with the mode
amplitudes in intensity derived for HD 49933 from the CoRoT data. On the other
hand, at high frequency, our calculations significantly depart from the CoRoT
and HARPS measurements. We show that assuming a solar metal abundance rather
than the actual metal abundance of the star would result in a larger
discrepancy with the seismic data. Furthermore, calculations that assume the
``new'' solar chemical mixture are in better agreement with the seismic data
than those that assume the ``old'' solar chemical mixture. These results
validate, in the case of a star significantly hotter than the Sun and Alpha Cen
A, the main assumptions in the model of stochastic excitation. However, the
discrepancies seen at high frequency highlight some deficiencies of the
modelling, whose origin remains to be understood.Comment: 8 pages, 3 figures (B-W and color), accepted for publication in
Astronomy & Astrophysics. Corrected typo in Eq. (4). Updated references.
Language improvement
Conformal Field Theory Approach to the 2-Impurity Kondo Problem: Comparison with Numerical Renormalization Group Results
Numerical renormalization group and conformal field theory work indicate that
the two impurity Kondo Hamiltonian has a non-Fermi liquid critical point
separating the Kondo-screening phase from the inter-impurity singlet phase when
particle-hole (P-H) symmetry is maintained. We clarify the circumstances under
which this critical point occurs, pointing out that there are two types of P-H
symmetry. Only one of them guarantees the occurance of the critical point. Much
of the previous numerical work was done on models with the other type of P-H
symmetry. We analyse this critical point using the boundary conformal field
theory technique. The finite-size spectrum is presented in detail and compared
with about 50 energy levels obtained using the numerical renormalization group.
Various Green's functions, general renormalization group behaviour, and a
hidden are analysed.Comment: 38 pages, RevTex. 2 new sections clarify the circumstances under
which a model will exhibit the non-trivial critical point (hence potentially
resolving disagreements with other Authors) and explain the hidden SO(7)
symmetry of the model, relating it to an alternative approach of Sire et al.
and Ga
Symmetric Strategy Improvement
Symmetry is inherent in the definition of most of the two-player zero-sum
games, including parity, mean-payoff, and discounted-payoff games. It is
therefore quite surprising that no symmetric analysis techniques for these
games exist. We develop a novel symmetric strategy improvement algorithm where,
in each iteration, the strategies of both players are improved simultaneously.
We show that symmetric strategy improvement defies Friedmann's traps, which
shook the belief in the potential of classic strategy improvement to be
polynomial
- …