15,280 research outputs found

    Hydrodynamical model atmospheres and 3D spectral synthesis

    Full text link
    We discuss three issues in the context of three-dimensional (3D) hydrodynamical model atmospheres for late-type stars, related to spectral line shifts, radiative transfer in metal-poor 3D models, and the solar oxygen abundance. We include a brief overview about the model construction, taking the radiation-hydrodynamics code CO5BOLD (COnservative COde for the COmputation of COmpressible COnvection in a BOx of L Dimensions with L=2,3) and the related spectral synthesis package Linfor3D as examples.Comment: 6 pages, 2 figures, to appear in the Proceedings of the ESO/Lisbon/Aveiro Workshop "Precision Spectroscopy in Astrophysics", eds. L. Pasquini, M. Romaniello, N.C. Santos, and A. Correi

    3D Simulation of Convection and Spectral Line Formation in A-type Stars

    Full text link
    We present first realistic numerical simulations of 3D radiative convection in the surface layers of main sequence A-type stars with Teff = 8000 K and 8500 K, log g = 4.4 and 4.0, recently performed with the CO5BOLD radiation hydrodynamics code. The resulting models are used to investigate the structure of the H+HeI and the HeII convection zones in comparison with the predictions of local and non-local convection theories, and to determine the amount of "overshoot" into the stable layers below the HeII convection zone. The simulations also predict how the topology of the photospheric granulation pattern changes from solar to A-type star convection. The influence of the photospheric temperature fluctuations and velocity fields on the shape of spectral lines is demonstrated by computing synthetic line profiles and line bisectors for some representative examples, allowing us to confront the 3D model results with observations.Comment: 5 pages, 6 figures (17 figure files), 1 Tabl

    Pure-hydrogen 3D model atmospheres of cool white dwarfs

    Full text link
    A sequence of pure-hydrogen CO5BOLD 3D model atmospheres of DA white dwarfs is presented for a surface gravity of log g = 8 and effective temperatures from 6000 to 13,000 K. We show that convective properties, such as flow velocities, characteristic granulation size and intensity contrast of the granulation patterns, change significantly over this range. We demonstrate that these 3D simulations are not sensitive to numerical parameters unlike the 1D structures that considerably depend on the mixing-length parameters. We conclude that 3D spectra can be used directly in the spectroscopic analyses of DA white dwarfs. We confirm the result of an earlier preliminary study that 3D model spectra provide a much better characterization of the mass distribution of white dwarfs and that shortcomings of the 1D mixing-length theory are responsible for the spurious high-log g determinations of cool white dwarfs. In particular, the 1D theory is unable to account for the cooling effect of the convective overshoot in the upper atmospheres.Comment: 14 pages, 17 figures, accepted for publication in Astronomy and Astrophysic
    • …
    corecore