946 research outputs found

    Evaluation of different sources of uncertainty in climate change impact research using a hydro-climatic model ensemble

    Get PDF
    The international research project QBic3 (Quebec-Bavarian Collaboration on Climate Change) aims at investigating the potential impacts of climate change on the hydrology of regional scale catchments in Southern Quebec (Canada) and Bavaria (Germany). Yet, the actual change in river runoff characteristics during the next 70 years is highly uncertain due to a multitude of uncertainty sources. The so-called hydro-climatic ensemble that is constructed to describe the uncertainties of this complex model chain consists of four different global climate models, downscaled by three different regional climate models, an exchangeable bias correction algorithm, a separate method to scale RCM outputs to the hydrological model scale and several hydrological models of differing complexity to assess the impact of different hydro model concepts. This choice of models and scenarios allows for the inter-comparison of the uncertainty ranges of climate and hydrological models, of the natural variability of the climate system as well as of the impact of scaling and correction of climate data on mean, high and low flow conditions. A methodology to display the relative importance of each source of uncertainty is proposed and results for past runoff and potential future changes are presented

    An ensemble approach to assess hydrological models’ contribution to uncertainties in the analysis of climate change impact on water resources

    Get PDF
    Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 5 project (Que®bec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in 10 Southern Que®bec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs’ members over a reference (1971–2000) and a future (2041–2070) periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual) give a significant level of trust for high and overall mean flows

    On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff

    Get PDF
    In climate change impact research, the assessment of future river runoff as well as the catchment scale water balance is impeded by different sources of modeling uncertainty. Some research has already been done in order to quantify the uncertainty of climate 5 projections originating from the climate models and the downscaling techniques as well as from the internal variability evaluated from climate model member ensembles. Yet, the use of hydrological models adds another layer of incertitude. Within the QBic3 project (QuÂŽebec-Bavaria International Collaboration on Climate Change) the relative contributions to the overall uncertainty from the whole model chain (from global climate 10 models to water management models) are investigated using an ensemble of multiple climate and hydrological models. Although there are many options to downscale global climate projections to the regional scale, recent impact studies tend to use Regional Climate Models (RCMs). One reason for that is that the physical coherence between atmospheric and land-surface 15 variables is preserved. The coherence between temperature and precipitation is of particular interest in hydrology. However, the regional climate model outputs often are biased compared to the observed climatology of a given region. Therefore, biases in those outputs are often corrected to reproduce historic runoff conditions from hydrological models using them, even if those corrections alter the relationship between temperature and precipitation. So, as bias correction may affect the consistency between RCM output variables, the use of correction techniques and even the use of (biased) climate model data itself is sometimes disputed among scientists. For those reasons, the effect of bias correction on simulated runoff regimes and the relative change in selected runoff indicators is explored. If it affects the conclusion of climate change analysis in 25 hydrology, we should consider it as a source of uncertainty. If not, the application of bias correction methods is either unnecessary in hydro-climatic projections, or safe to use as it does not alter the change signal of river runoff. The results of the present paper highlight the analysis of daily runoff simulated with four different hydrological models in two natural-flow catchments, driven by different regional climate models for a reference and a future period. As expected, bias correction of climate model outputs is important for the reproduction of the runoff regime of the 5 past regardless of the hydrological model used. Then again, its impact on the relative change of flow indicators between reference and future period is weak for most indicators with the exception of the timing of the spring flood peak. Still, our results indicate that the impact of bias correction on runoff indicators increases with bias in the climate simulations

    Freezing transitions and the density of states of 2D random Dirac Hamiltonians

    Full text link
    Using an exact mapping to disordered Coulomb gases, we introduce a novel method to study two dimensional Dirac fermions with quenched disorder in two dimensions which allows to treat non perturbative freezing phenomena. For purely random gauge disorder it is known that the exact zero energy eigenstate exhibits a freezing-like transition at a threshold value of disorder σ=σth=2\sigma=\sigma_{th}=2. Here we compute the dynamical exponent zz which characterizes the critical behaviour of the density of states around zero energy, and find that it also exhibits a phase transition. Specifically, we find that ρ(E=0+iÏ”)∌ϔ2/z−1\rho(E=0 + i \epsilon) \sim \epsilon^{2/z-1} (and ρ(E)∌E2/z−1\rho(E) \sim E^{2/z-1}) with z=1+σz=1 + \sigma for σ<2\sigma < 2 and z=8σ−1z=\sqrt{8 \sigma} - 1 for σ>2\sigma > 2. For a finite system size L<ϔ−1/zL<\epsilon^{-1/z} we find large sample to sample fluctuations with a typical ρϔ(0)∌Lz−2\rho_{\epsilon}(0) \sim L^{z-2}. Adding a scalar random potential of small variance ÎŽ\delta, as in the corresponding quantum Hall system, yields a finite noncritical ρ(0)∌Ύα\rho(0) \sim \delta^{\alpha} whose scaling exponent α\alpha exhibits two transitions, one at σth/4\sigma_{th}/4 and the other at σth\sigma_{th}. These transitions are shown to be related to the one of a directed polymer on a Cayley tree with random signs (or complex) Boltzmann weights. Some observations are made for the strong disorder regime relevant to describe transport in the quantum Hall system

    An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    Get PDF
    Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic&lt;sup&gt;3&lt;/sup&gt; project (QuĂ©bec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e., lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern QuĂ©bec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by global climate models over a reference (1971–2000) and a future (2041–2070) period. The results show that, for our hydrological model ensemble, the choice of model strongly affects the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    • 

    corecore