55 research outputs found
Gate-induced magneto-oscillation phase anomalies in graphene bilayers
The magneto-oscillations in graphene bilayers are studied in the vicinity of
the K and K' points of the Brillouin zone within the four-band continuum model
ased on the simplest tight-binding approximation involving only the nearest
neighbor interactions. The model is employed to construct Landau plots for a
variety of carrier concentrations and bias strengths between the graphene
planes. The quantum-mechanical and quasiclassical approaches are compared. We
found that the quantum magneto-oscillations are only asymptotically periodic
and reach the frequencies predicted quasiclassically for high indices of Landau
levels. In unbiased bilayers the phase of oscillations is equal to the phase of
massive fermions. Anomalous behavior of oscillation phases was found in biased
bilayers with broken inversion symmetry. The oscillation frequencies again tend
to quasiclassically predicted ones, which are the same for and , but
the quantum approach yields the gate-tunable corrections to oscillation phases,
which differ in sign for K and K'. These valley-dependent phase corrections
give rise, instead of a single quasiclassical series of oscillations, to two
series with the same frequency but shifted in phase.Comment: 8 pages, 8 figure
Dogs Discriminate Identical Twins
Earlier studies have shown variation among experimental attempts to establish whether human monozygotic twins that are genetically identical also have identical individual scents. In none of the cases were the dogs able to distinguish all the individual scents of monozygotic twins living in the same environment if the scents were presented to them separately. Ten specially trained police German Shepherd dogs of three Czech Republic Police Regional Headquarters were used for scent identification in our study. The dogs were supposed to match scents of two monozygotic pairs (5 and 7 years old) and two dizygotic twin pairs (8 and 13 years old). Scents were collected on cotton squares stored in glass jars. Dog handlers were blind to the experiment details. In each trial (line-up), one scent was used as a starting scent and the dog was then sent to determine if any of the 7 presented glass jars contained a matching scent. Scents of children of similar ages were used as distractors. In the matching procedure, the dogs matched correctly the scent of one twin with the other, as well as two scents collected from every single identical and non-identical twin to prove their efficacy and likewise, the presence of the matching twin scent in any given glass jar. All dogs in all trials distinguished correctly the scents of identical as well as non-identical twins. All dogs similarly matched positively two scents collected from the same individuals. Our findings indicated that specially trained German Shepherd dogs are able to distinguish individual scents of identical twins despite the fact that they live in the same environment, eat the same food and even if the scents are not presented to them simultaneously
- …