2 research outputs found

    Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rehabilitation of hand function is challenging, and only few studies have investigated robot-assisted rehabilitation focusing on distal joints of the upper limb. This paper investigates the feasibility of using the <it>HapticKnob</it>, a table-top end-effector device, for robot-assisted rehabilitation of grasping and forearm pronation/supination, two important functions for activities of daily living involving the hand, and which are often impaired in chronic stroke patients. It evaluates the effectiveness of this device for improving hand function and the transfer of improvement to arm function.</p> <p>Methods</p> <p>A single group of fifteen chronic stroke patients with impaired arm and hand functions (Fugl-Meyer motor assessment scale (FM) 10-45/66) participated in a 6-week 3-hours/week rehabilitation program with the <it>HapticKnob</it>. Outcome measures consisted primarily of the FM and Motricity Index (MI) and their respective subsections related to distal and proximal arm function, and were assessed at the beginning, end of treatment and in a 6-weeks follow-up.</p> <p>Results</p> <p>Thirteen subjects successfully completed robot-assisted therapy, with significantly improved hand and arm motor functions, demonstrated by an average 3.00 points increase on the FM and 4.55 on the MI at the completion of the therapy (4.85 FM and 6.84 MI six weeks post-therapy). Improvements were observed both in distal and proximal components of the clinical scales at the completion of the study (2.00 FM wrist/hand, 2.55 FM shoulder/elbow, 2.23 MI hand and 4.23 MI shoulder/elbow). In addition, improvements in hand function were observed, as measured by the Motor Assessment Scale, grip force, and a decrease in arm muscle spasticity. These results were confirmed by motion data collected by the robot.</p> <p>Conclusions</p> <p>The results of this study show the feasibility of this robot-assisted therapy with patients presenting a large range of impairment levels. A significant homogeneous improvement in both hand and arm function was observed, which was maintained 6 weeks after end of the therapy.</p

    Actuation Methods for Applications in MR Environments

    No full text
    The choice of an adequate actuation method is a central issue in the development of any mechatronic device and strongly determines the dynamic performances of the system. This choice is particularly difficult for robotic systems working within a magnetic resonance (MR) environment because of the safety and compatibility constraints imposed by the high magnetic field, switching gradients, electromagnetic pulses, and sensitive measuring equipment involved. This article analyzes actuation methods for robotic systems to be used within a magnetic resonance environment, such as systems for diagnostic and interventional MRI, neuroscience studies during functional MRI, and diagnostic fMRI. In the case of functional MRI, actuation is also required during imaging, whereas current MR-compatible interventional systems are typically moved between imaging phases. Our analysis is based on a variety of actuation principles that we have tested both for MR compatibility and for the quality of force feedback that can be realized, including hydrostatic, belt, and cable transmissions as well as electrostatic and piezoelectric actuators. The results are completed with developments of other groups. A good solution to a given application often involves a combination of several actuation principles. A synthesis of characteristics and three comparative tables aid in the choice of an adequate actuation method for a given task or application. © 2006 Wiley Periodicals, Inc. Concepts Magn Reson 29B: 191-209, 2006
    corecore