1,300 research outputs found
Recommended from our members
Cooperative research and development agreements at METC
The Morgantown Energy Technology Center (METC) is always interested in discussing partnering opportunities with those in the private sector. One way METC can work with the private sector and academia is through Cooperative Research and Development Agreements (CRADAs). From METC`s perspective, a good CRADA consists of two elements: a good project and a good CRADA partner. Good CRADA projects address goals that are beneficial to both the private sector participant and METC. Of primary interest to METC is the development and deployment of clean, efficient power generation technologies and environmental remediation technologies. For power generation, METC`s primary focus is on Integrated Gasification Combined Cycle (IGCC)systems, Pressurized Fluidized-Bed Combustion (PFBC) systems, Advanced Turbine Systems (ATS), Externally Fired Combined-Cycle (EFCC) power systems, fuel cell systems, and fuels technology systems. METC`s environmental remediation interests focus on the development of high-payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites, and to manage DOE-generated waste faster, safer, and cheaper than environmental cleanup technologies that are currently available. Regarding CRADA partners, preference is given to small businesses and to business units located in the United States which agree that products resulting from the CRADA will be manufactured substantially in the United States
High accuracy measure of atomic polarizability in an optical lattice clock
Despite being a canonical example of quantum mechanical perturbation theory,
as well as one of the earliest observed spectroscopic shifts, the Stark effect
contributes the largest source of uncertainty in a modern optical atomic clock
through blackbody radiation. By employing an ultracold, trapped atomic ensemble
and high stability optical clock, we characterize the quadratic Stark effect
with unprecedented precision. We report the ytterbium optical clock's
sensitivity to electric fields (such as blackbody radiation) as the
differential static polarizability of the ground and excited clock levels:
36.2612(7) kHz (kV/cm)^{-2}. The clock's fractional uncertainty due to room
temperature blackbody radiation is reduced an order of magnitude to 3 \times
10^{-17}.Comment: 5 pages, 3 figures, 2 table
Sub-femtosecond absolute timing precision with a 10 GHz hybrid photonic-microwave oscillator
We present an optical-electronic approach to generating microwave signals
with high spectral purity. By circumventing shot noise and operating near
fundamental thermal limits, we demonstrate 10 GHz signals with an absolute
timing jitter for a single hybrid oscillator of 420 attoseconds (1Hz - 5 GHz)
An atomic clock with instability
Atomic clocks have been transformational in science and technology, leading
to innovations such as global positioning, advanced communications, and tests
of fundamental constant variation. Next-generation optical atomic clocks can
extend the capability of these timekeepers, where researchers have long aspired
toward measurement precision at 1 part in . This milestone will
enable a second revolution of new timing applications such as relativistic
geodesy, enhanced Earth- and space-based navigation and telescopy, and new
tests on physics beyond the Standard Model. Here, we describe the development
and operation of two optical lattice clocks, both utilizing spin-polarized,
ultracold atomic ytterbium. A measurement comparing these systems demonstrates
an unprecedented atomic clock instability of after
only hours of averaging
Twentieth century increase in snowfall in coastal West Antarctica
The Amundsen Sea sector of the West Antarctic ice sheet has been losing mass in recent decades; however, long records of snow accumulation are needed to place the recent changes in context. Here we present 300 year records of snow accumulation from two ice cores drilled in Ellsworth Land, West Antarctica. The records show a dramatic increase in snow accumulation during the twentieth century, linked to a deepening of the Amundsen Sea Low (ASL), tropical sea surface temperatures, and large-scale atmospheric circulation. The observed increase in snow accumulation and interannual variability during the late twentieth century is unprecedented in the context of the past 300 years and evidence that the recent deepening of the ASL is part of a longer trend
Coherent optical phase transfer over a 32-km fiber with 1-s instability at
The phase coherence of an ultrastable optical frequency reference is fully
maintained over actively stabilized fiber networks of lengths exceeding 30 km.
For a 7-km link installed in an urban environment, the transfer instability is
at 1-s. The excess phase noise of 0.15 rad, integrated from
8 mHz to 25 MHz, yields a total timing jitter of 0.085 fs. A 32-km link
achieves similar performance. Using frequency combs at each end of the
coherent-transfer fiber link, a heterodyne beat between two independent
ultrastable lasers, separated by 3.5 km and 163 THz, achieves a 1-Hz linewidth.Comment: 4 pages, 4 figure
- …