14 research outputs found

    The Structural and Optical Properties of 1,2,4-Triazolo[4,3-a]pyridine-3-amine

    No full text
    The structural and spectroscopic properties of a new triazolopyridine derivative (1,2,4-triazolo[4,3-a]pyridin-3-amine) are described in this paper. Its FTIR spectrum was recorded in the 100–4000 cm−1 range and its FT-Raman spectrum in the range 80–4000 cm−1. The molecular structure and vibrational spectra were analyzed using the B3LYP/6-311G(2d,2p) approach and the GAUSSIAN 16W program. The assignment of the observed bands to the respective normal modes was proposed on the basis of PED calculations. XRD studies revealed that the studied compound crystallizes in the centrosymmetric monoclinic space group P21/n with eight molecules per unit cell. However, the asymmetric unit contains two 1,2,4-triazolo[4,3-a]pyridin-3-amine molecules linked via N–H⋯N hydrogen bonds with a R22(8) graph. The stability of the studied molecule was considered using NBO analysis. Electron absorption and the luminescence spectra were measured and discussed in terms of the calculated singlet, triplet, HOMO and LUMO electron energies. The Stokes shifts derived from the optical spectra were equal to 9410 cm−1 for the triazole ring and 7625 cm−1 for the pyridine ring

    Physicochemical Characterization of the Loganic Acid–IR, Raman, UV-Vis and Luminescence Spectra Analyzed in Terms of Quantum Chemical DFT Approach

    No full text
    The molecular structure and vibrational spectra of loganic acid (LA) were calculated using B3LYP density functional theory, the 6–311G(2d,2p) basis set, and the GAUSSIAN 03W program. The solid-phase FTIR and FT-Raman spectra of LA were recorded in the 100–4000 cm−1 range. The assignment of the observed bands to the respective normal modes was proposed on the basis of the PED approach. The stability of the LA molecule was considered using NBO analysis. The electron absorption and luminescence spectra were measured and discussed in terms of the calculated singlet, triplet, HOMO, and LUMO electron energies. The Stokes shift derived from the optical spectra was 20,915 cm−1

    Spectroscopic Evidence of Thermal Changes in Plant Oils during Deep-Frying—Chemical and Infrared Studies

    No full text
    For this study, the thermal degradation of palm, coconut, rice bran, and rapeseed (canola) oils was studied. Products formed during deep-frying were identified using chemical methods and these results were verified with those derived from FT-IR (Fourier-transform infrared spectroscopy) studies. Mathematically processed spectral data were analyzed in terms of the breaking of double bonds, the decomposition of the carotenoids, and the reduction of the C=O carbonyl group. Clearly visible changes in the position and intensity of some bands were used for explaining the structural changes in the studied oils. These changes prove that during the heating of the oils, decomposition of the plant fat into fatty acids appears, together with the reduction of the number of certain bonds (e.g., C=C, =C-H, and C=O) and cracking of the acylglycerol chains. The iodine values of the heated oils, determined from the FT-IR spectra measurements, show a significant decrease in their degree of unsaturation level. These effects, visible in the FT-IR spectra, confirm the chemical and structural changes derived from the chemical and physicochemical studies of the plant oils. The influence of heating time on the band intensity of proteins was also studied
    corecore