22 research outputs found

    Alpha-2-macroglobulin loaded microcapsules enhance human leukocyte functions and innate immune response

    Get PDF
    Synthetic microstructures can be engineered to deliver bioactive compounds impacting on their pharmacokinetics and pharmacodynamics. Herein, we applied dextran-based layer-by-layer (LbL) microcapsules to deliver alpha-2-macroglobulin (α2MG), a protein with modulatory properties in inflammation. Extending recent observations made with dextran-microcapsules loaded with α2MG in experimental sepsis, we focused on the physical and chemical characteristics of these microstructures and determined their biology on rodent and human cells. We report an efficient encapsulation of α2MG into microcapsules, which enhanced i) human leukocyte recruitment to inflamed endothelium and ii) human macrophage phagocytosis: in both settings microcapsules were more effective than soluble α2MG or empty microcapsules (devoid of active protein). Translation of these findings revealed that intravenous administration of α2MG-microcapsules (but not empty microcapsules) promoted neutrophil migration into peritoneal exudates and augmented macrophage phagocytic functions, the latter response being associated with alteration of bioactive lipid mediators as assessed by mass spectrometry. The present study indicates that microencapsulation can be an effective strategy to harness the complex biology of α2MG with enhancing outcomes on fundamental processes of the innate immune response paving the way to potential future development in the control of sepsis

    Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis

    Get PDF
    These studies were supported by The Wellcome Trust (program 086867/Z/08) and the William Harvey Research Foundation to MP, the United Kingdom Intensive Care Society to CJH and the National Institutes of Health GM Grant P01GM095967 (awarded to Charles N. Serhan). LVN is supported by an Arthritis Research UK Career Development Fellowship (19909). EPSRC Seed Funding Cross disciplinary Grant (QMUL) awarded to GBS and MP. This work forms part of the research themes contributing to the translational research portfolio of Barts and The London NIHR Cardiovascular BRU

    Hydroalcoholic crude extract of Casearia sylvestris Sw. reduces chronic post-ischemic pain by activation of pro-resolving pathways

    Get PDF
    Ethnopharmacological relevance Casearia sylvestris Sw. is widely used in popular medicine to treat conditions associated with pain. Aim of the study The present study investigated the influence of hydroalcoholic crude extract of Casearia sylvestris (HCE-CS) and contribution of pro-resolving mediators on mechanical hyperalgesia in a mouse model of chronic post-ischemia pain (CPIP). Methods and results Male Swiss mice were subjected to ischemia of the right hind paw (3 h), then reperfusion was allowed. At 10 min, 24 h or 48 h post-ischemia/reperfusion (I/R), different groups of animals were treated with HCE-CS (30 mg/Kg, orally [p.o]), selected agonists at the proresolving receptor ALX/FPR2 (natural molecules like resolvin D1 and lipoxin A4 or the synthetic compound BML-111; 0.1–1 µg/animal) or vehicle (saline, 10 mL/Kg, s.c.), in the absence or presence of the antagonist WRW4 (10 µg, s.c.). Mechanical hyperalgesia (paw withdrawal to von Frey filament) was asseseed together with histological and immunostainning analyses. In these settings, pro-resolving mediators reduced mechanical hyperalgesia and HCE-CS or BML-111 displayed anti-hyperalgesic effects which was markedly attenuated in animals treated with WRW4. ALX/FPR2 expression was raised in skeletal muscle or neutrophils after treatment with HCE-CS or BML-111. Conclusion These results reveal significant antihyperalgesic effect of HCE-CS on CPIP, mediated at least in part, by the pathway of resolution of inflammation centred on the axis modulated by ALX/FPR2

    Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis

    Get PDF
    National Institutes of Health grants GM-38765 and P50-DE016191 (C.N.S.), Welcome Trust Programme grant 086867/Z/08/Z (R.J.F. and M.P.) and Project grant 085903/Z/08 (R.J.F.) and Arthritis Research Campaign UK fellowships 18445 and 18103 (to L.V.N. and D.C., respectively). M.S. received a National Research Service Award from the NHLBI (HL087526)

    Association between periodontal disease and inflammatory arthritis reveals modulatory functions by melanocortin receptor type 3

    Get PDF
    Because there is clinical evidence for an association between periodontal disease and rheumatoid arthritis, it is important to develop suitable experimental models to explore pathogenic mechanisms and therapeutic opportunities. The K/BxN serum model of inflammatory arthritis was applied using distinct protocols, and modulation of joint disruption afforded by dexamethasone and calcitonin was established in comparison to the melanocortin (MC) receptor agonist DTrp8–γ-melanocyte stimulating hormone (MSH; DTrp). Wild-type and MC receptor type 3 (MC3)-null mice of different ages were also used. There was significant association between severity of joint disease, induced with distinct protocols and volumes of the arthritogenic K/BxN serum, and periodontal bone damage. Therapeutic treatment with 10 μg dexamethasone, 30 ng elcatonin, and 20 μg DTrp per mouse revealed unique and distinctive pharmacological properties, with only DTrp protecting both joint and periodontal tissue. Further analyses in nonarthritic animals revealed higher susceptibility to periodontal bone loss in Mc3r−/− compared with wild-type mice, with significant exacerbation at 14 weeks of age. These data reveal novel protective properties of endogenous MC3 on periodontal status in health and disease and indicate that MC3 activation could lead to the development of a new genus of anti-arthritic bone-sparing therapeutics
    corecore