249 research outputs found

    XMM-Newton X-ray Observations of the Wolf-Rayet Binary System WR 147

    Full text link
    We present results of a 20 ksec X-ray observation of the Wolf-Rayet (WR) binary system WR 147 obtained with XMM-Newton. Previous studies have shown that this system consists of a nitrogen-type WN8 star plus an OB companion whose winds are interacting to produce a colliding wind shock. X-ray spectra from the pn and MOS detectors confirm the high extinction reported from IR studies and reveal hot plasma including the first detection of the Fe K-alpha line complex at 6.67 keV. Spectral fits with a constant-temperature plane-parallel shock model give a shock temperature kT(shock) = 2.7 keV [T(shock) ~ 31 MK], close to but slightly hotter than the maximum temperature predicted for a colliding wind shock. Optically thin plasma models suggest even higher temperatures, which are not yet ruled out. The X-ray spectra are harder than can be accounted for using 2D numerical colliding wind shock models based on nominal mass-loss parameters. Possible explanations include: (i) underestimates of the terminal wind speeds or wind abundances, (ii) overly simplistic colliding wind models, or (iii) the presence of other X-ray emission mechanisms besides colliding wind shocks. Further improvement of the numerical models to include potentially important physics such as non-equilibrium ionization will be needed to rigorously test the colliding wind interpretation.Comment: 8 pages, 7 figure

    X-Rays From Massive OB Stars: Thermal Emission From Radiative Shocks

    Full text link
    Chandra gratings spectra of a sample of 15 massive OB stars were analyzed under the basic assumption that the X-ray emission is produced in an ensemble of shocks formed in the winds driven by these objects. Shocks develop either as a result of radiation-driven instabilities or due to confinement of the wind by relatively strong magnetic field, and since they are radiative, a simple model of their X-ray emission was developed that allows a direct comparison with observations. According to our model, the shock structures (clumps, complete or fractional shells) eventually become `cold' clouds in the X-ray sky of the star. As a result, it is expected that for large covering factors of the hot clumps, there is a high probability for X-ray absorption by the `cold' clouds, resulting in blue-shifted spectral lines. Our analysis has revealed that such a correlation indeed exists for the considered sample of OB stars. As to the temperature characteristics of the X-ray emission plasma, the studied OB stars fall in two groups: (i) one with plasma temperature limited to 0.1-0.4 keV; (ii) the other wtih X-rays produced in plasmas at considerably higher temperatures. We argue that the two groups correspond to different mechanisms for the origin of X-rays: in radiative-driven instability shocks and in magnetically-confined wind shocks, respectively.Comment: 11 pages, 4 figures, 2 tables; accepted for publication in MNRA

    Harvard Glaucoma Fairness: A Retinal Nerve Disease Dataset for Fairness Learning and Fair Identity Normalization

    Full text link
    Fairness (also known as equity interchangeably) in machine learning is important for societal well-being, but limited public datasets hinder its progress. Currently, no dedicated public medical datasets with imaging data for fairness learning are available, though minority groups suffer from more health issues. To address this gap, we introduce Harvard Glaucoma Fairness (Harvard-GF), a retinal nerve disease dataset with both 2D and 3D imaging data and balanced racial groups for glaucoma detection. Glaucoma is the leading cause of irreversible blindness globally with Blacks having doubled glaucoma prevalence than other races. We also propose a fair identity normalization (FIN) approach to equalize the feature importance between different identity groups. Our FIN approach is compared with various the-state-of-the-art fairness learning methods with superior performance in the racial, gender, and ethnicity fairness tasks with 2D and 3D imaging data, which demonstrate the utilities of our dataset Harvard-GF for fairness learning. To facilitate fairness comparisons between different models, we propose an equity-scaled performance measure, which can be flexibly used to compare all kinds of performance metrics in the context of fairness. The dataset and code are publicly accessible via \url{https://ophai.hms.harvard.edu/datasets/harvard-glaucoma-fairness-3300-samples/}

    Evolution of floral symmetry

    Get PDF
    Flowers can be classified into two basic types according to their symmetry: regular flowers have more than one plane of symmetry and irregular flowers have only a single plane of symmetry. The irregular condition is thought to have evolved many times independently from the regular one: most commonly through the appearance of asymmetry along the dorso-ventral axis of the flower. In most cases, the irregular condition is associated with a particular type of inflorescence architecture. To understand the molecular mechanism and evolutionary origin of irregular flowers, we have been investigating genes controlling asymmetry in Antirrhinum. Several mutations have been described in Antirrhinum, a species with irregular flowers, that reduce or eliminate asymmetry along the dorso-ventral axis. We describe the nature of these mutations and how they may be used to analyse the molecular mechanisms underlying floral evolution

    Evaluation of Mycobacterium avium subsp. paratuberculosis isocitrate lyase (IcL) and ABC transporter (BacA) knockout mutants as vaccine candidates

    Get PDF
    There has been little success in controlling Johne’s disease, caused by Mycobacterium avium subsp. paratuberculosis, due to suboptimal diagnostics and the ineffectiveness of available vaccines. By knocking out BacA and IcL, genes required for MAP survival in dairy calves, two live-attenuated vaccine candidates were created. This study evaluated the host-specific attenuation of MAP IcL and BacA mutants in mouse and calf models, as well as the elicited immune responses. Deletion mutants were generated in MAP strain A1-157 through specialized transduction and found viable in vitro. First, the mutants’ attenuation and elicited cytokine secretion were assessed in a mouse model, 3 weeks after intraperitoneal inoculation with MAP strains. Later, vaccine strains were assessed in a natural host infection model where calves received 109CFU oral dose of MAP wild-type or mutant strains at 2 weeks old. Transcription levels of cytokines in PBMCs were evaluated at 12-, 14-, and 16-weeks post-inoculation (WPI) and MAP colonization in tissue was assessed at 4.5 months after inoculation. Whereas both vaccine candidates colonized mouse tissues similarly to wild-type strain, both failed to persist in calf tissues. In either mouse or calf models, gene deletion did not reduce immunogenicity. Instead, inoculation with ΔBacA induced a greater upregulation of proinflammatory cytokines than ΔIcL and wild-type in both models and a greater expansion of cytotoxic and memory T-cells than uninfected control in calves. ΔBacA and wild-type strains significantly increased secretion of IP-10, MIG, TNFα, and RANTES in mice serum compared to uninfected control. This agreed with upregulation of IL-12, IL-17, and TNFα in calves inoculated with ΔBacA at all time points. The ΔBacA also gave rise to greater populations of CD4+CD45RO+, and CD8+ cells than uninfected control calves at 16 WPI. Low survival rate of MAP in macrophages co-incubated with PBMCs isolated from the ΔBacA group indicated that these cell populations are capable of killing MAP. Overall, the immune response elicited by ΔBacA is stronger compared to ΔIcL and it is maintained over two different models and over time in calves. Further investigation is warranted to evaluate the BacA mutant's protection against MAP infection as a live attenuated vaccine candidate

    An actuator surface model to simulate vertical axis turbines

    Get PDF
    An actuator surface model (ASM) to be employed to simulate the effect of a vertical axis turbine on the hydrodynamics in its vicinity, particularly its wake is introduced. The advantage of the newly developed ASM is that it can represent the complex flow inside the vertical axis turbine’s perimeter reasonably well, and hence, is able to predict, with a satisfying degree of accuracy, the turbine’s near-wake, with a low computational cost. The ASM appears to overcome the inadequacy of actuator line models to account for the flow blockage of the rotor blades when they are on the up-stream side of the revolution, because the ASM uses a surface instead of a line to represent the blade. The ASM was used on a series of test cases to prove its validity, demonstrating that first order flow statistics—in our study, profiles of the stream-wise velocity—in the turbine’s vicinity, can be produced with reasonable accuracy. The prediction of second order statistics, here in the form of the turbulent kinetic energy (TKE), exhibited dependence on the chosen grid; the finer the grid, the better the match between measured and computed TKE profiles

    Anisotropic mass ejection in binary mergers

    Full text link
    We investigate the mass loss from a rotationally distorted envelope following the early, rapid in-spiral of a companion star inside a common envelope. For initially wide, massive binaries (M_1+M_2=20M_{\odot}, P\sim 10 yr), the primary has a convective envelope at the onset of mass transfer and is able to store much of the available orbital angular momentum in its expanded envelope. Three-dimensional smoothed particle hydrodynamics calculations show that mass loss is enhanced at mid-latitudes due to shock reflection from a torus-shaped outer envelope. Mass ejection in the equatorial plane is completely suppressed if the shock wave is too weak to penetrate the outer envelope in the equatorial direction (typically when the energy deposited in the star is less than about one-third of the binding energy of the envelope). We present a parameter study to show how the geometry of the ejecta depends on the angular momentum and the energy deposited in the envelope during a merging event. Applications to the nearly axisymmetric, but very non-spherical nebulae around SN1987A and Sheridan 25 are discussed, as well as possible links to RY Scuti and the Small Magellanic Cloud object R4.Comment: 10 pages, 11 figures, accepted for publication in MNRAS. Figs 1, 2 and 10 reduced in siz

    Theoretical X-ray Line Profiles from Colliding Wind Binaries

    Full text link
    We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_\infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_\infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E <~ 1 kev) are particularly affected. This generally results in blueward-skewed profiles, especially when the system is viewed through the dense wind of the primary. The orbital variation of the line widths and shifts is reduced in a low inclination binary. The extreme case is a binary with i = 0 degrees, for which we would expect no line profile variation.Comment: 15 pages, 15 figures. To appear in MNRA

    Weak wind effects in CNO driven winds of hot first stars

    Full text link
    During the evolution of rotating first stars, which initially consisted of only hydrogen and helium, CNO elements may emerge to their surface. These stars may therefore have winds that are driven only by CNO elements. We study weak wind effects (Gayley-Owocki heating and multicomponent effects) in stellar winds of first generation stars driven purely by CNO elements. We apply our NLTE multicomponent models and hydrodynamical simulations. The multicomponent effects (frictional heating and decoupling) are important particularly for low metallicity winds, but they influence mass loss rate only if they cause decoupling for velocities lower than the escape velocity. The multicomponent effects also modify the feedback from first stars. As a result of the decoupling of radiatively accelerated metals from hydrogen and helium, the first low-energy cosmic ray particles are generated. We study the interaction of these particles with the interstellar medium concluding that these particles easily penetrate the interstellar medium of a given minihalo. We discuss the charging of the first stars by means of their winds. Gayley-Owocki heating, frictional heating, and the decoupling of wind components occur in the winds of evolved low-metallicity stars and the solar metallicity main-sequence stars.Comment: 10 pages, accepted for publication in Astronomy & Astrophysic
    • …
    corecore