35 research outputs found

    A narrative review of the potential pharmacological influence and safety of ibuprofen on coronavirus disease 19 (COVID-19), ACE2, and the immune system: a dichotomy of expectation and reality

    Get PDF
    The coronavirus disease 19 (COVID-19) pandemic is currently the most acute healthcare challenge in the world. Despite growing knowledge of the nature of Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), treatment options are still poorly defined. The safety of non-steroidal anti-inflammatory drugs (NSAIDs), specifically ibuprofen, has been openly questioned without any supporting evidence or clarity over dose, duration, or temporality of administration. This has been further conflicted by the initiation of studies to assess the efficacy of ibuprofen in improving outcomes in severe COVID-19 patients. To clarify the scientific reality, a literature search was conducted alongside considerations of the pharmacological properties of ibuprofen in order to construct this narrative review. The literature suggests that double-blind, placebo-controlled study results must be reported and carefully analysed for safety and efficacy in patients with COVID-19 before any recommendations can be made regarding the use of ibuprofen in such patients. Limited studies have suggested: (i) no direct interactions between ibuprofen and SARS-CoV-2 and (ii) there is no evidence to suggest ibuprofen affects the regulation of angiotensin-converting-enzyme 2 (ACE2), the receptor for COVID-19, in human studies. Furthermore, in vitro studies suggest ibuprofen may facilitate cleavage of ACE2 from the membrane, preventing membrane-dependent viral entry into the cell, the clinical significance of which is uncertain. Additionally, in vitro evidence suggests that inhibition of the transcription factor nuclear factor-κB (NF-kB) by ibuprofen may have a role in reducing excess inflammation or cytokine release in COVID-19 patients. Finally, there is no evidence that ibuprofen will aggravate or increase the chance of infection of COVID-19

    Transcutaneous assessment of glomerular filtration rate in unanesthetized rats using a small animal imager:Impact on arterial pressure, heart rate, and activity

    No full text
    Transcutaneous assessment of fluorescein isothiocyanate (FITC)‐sinistrin clearance using a small animal imager has recently been validated as an accurate method for the measurement of glomerular filtration rate (GFR) in freely moving rats. This technique involves a brief, light period of anesthesia during which the imager is adhered to the rat and FITC‐sinistrin is administered. The rat is then moved to an experimental chamber where it is housed unrestrained for a 2‐h data collection period. This study assessed the impact of the experimental protocol on mean arterial pressure (MAP), heart rate, and locomotor activity in adult Sprague Dawley rats using radiotelemetry given that anesthesia and stress are known to affect arterial pressure and kidney function. These data were compared with time‐equivalent measurements made in the same rats at rest. MAP was low following anesthesia, but increased within 15 min and remained stable thereafter. Heart rate was not affected by the GFR protocol. Locomotor activity increased following anesthesia before decreasing to relatively low levels during the final 75‐min, the approximate period from which GFR is calculated. Moreover, MAP, heart rate, and locomotor activity during the final 75‐min of the data collection period were not different to that observed during an equivalent time period at baseline. Taken together, our findings suggest that this recently developed minimally invasive procedure for the measurement of GFR in unanesthetized rats does not negatively impact arterial pressure, heart rate, or locomotor activity. Thus, it is likely to be a valuable implement for acquiring serial measurements of GFR in unanesthetized rats

    Pressor responsiveness to angiotensin II in female mice is enhanced with age:Role of the angiotensin type 2 receptor

    Get PDF
    BACKGROUND: The pressor response to angiotensin II (AngII) is attenuated in adult females as compared to males via an angiotensin type 2 receptor (AT(2)R)-dependent pathway. We hypothesized that adult female mice are protected against AngII-induced hypertension via an enhanced AT(2)R-mediated pathway and that in reproductively senescent females this pathway is no longer operative. METHODS: Mean arterial pressure was measured via telemetry in 4-month-old (adult) and 16-month-old (aged) and aged ovariectomized (aged-OVX) wild-type and AT(2)R knockout (AT(2)R-KO) female mice during baseline and 14-day infusion of vehicle (saline) or AngII (600 ng/kg/min s.c.). Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to determine renal gene expression of angiotensin receptors and angiotensin-converting enzyme 2 in response to 14-day treatment with vehicle or AngII. RESULTS: Basal mean arterial pressure was similar between the groups. The pressor response to AngII was augmented in adult AT(2)R-KO compared to adult wild-type mice (29 ± 3 mmHg versus 10 ± 4 mmHg, respectively, on day 14 as compared to basal mean arterial pressure, P = 0.002). In wild-type mice, pressor responsiveness to AngII was augmented with age, such that the pressor response to AngII was similar between aged AT(2)R-KO and wild-type female mice (31 ± 4 mmHg versus 34 ± 3 mmHg, respectively, on day 14, P = 0.9). There were no significant differences in pressor responsiveness to AngII between aged and aged-OVX mice. Vehicle-treated aged wild-type mice had a lower renal AT(2)R/AT(1)R balance as compared to adult counterparts. In response to AngII, the renal AT(2)R/AT(1)R balance in aged wild-type females was greater than that observed in vehicle-treated aged wild-type females and adult wild-type females, yet the protective effects of AT(2)R activation were not restored. CONCLUSIONS: The protective role of the AT(2)R depressor pathway is lost with age in female mice. Therefore, targeting deficits in AT(2)R expression and/or signaling may represent a novel anti-hypertensive approach in aged females

    Determinants of renal tissue hypoxia in a rat model of polycystic kidney disease

    No full text
    Renal tissue oxygen tension (PO₂) and its determinants have not been quantified in polycystic kidney disease (PKD). Therefore, we measured kidney tissue PO₂ in the Lewis rat model of PKD (LPK) and in Lewis control rats. We also determined the relative contributions of altered renal oxygen delivery and consumption to renal tissue hypoxia in LPK rats. PO₂ of the superficial cortex of 11- to 13-wk-old LPK rats, measured by Clark electrode with the rat under anesthesia, was higher within the cysts (32.8 ± 4.0 mmHg) than the superficial cortical parenchyma (18.3 ± 3.5 mmHg). PO₂ in the superficial cortical parenchyma of Lewis rats was 2.5-fold greater (46.0 ± 3.1 mmHg) than in LPK rats. At each depth below the cortical surface, tissue PO₂ in LPK rats was approximately half that in Lewis rats. Renal blood flow was 60% less in LPK than in Lewis rats, and arterial hemoglobin concentration was 57% less, so renal oxygen delivery was 78% less. Renal venous PO₂ was 38% less in LPK than Lewis rats. Sodium reabsorption was 98% less in LPK than Lewis rats, but renal oxygen consumption did not significantly differ between the two groups. Thus, in this model of PKD, kidney tissue is severely hypoxic, at least partly because of deficient renal oxygen delivery. Nevertheless, the observation of similar renal oxygen consumption, despite markedly less sodium reabsorption, in the kidneys of LPK compared with Lewis rats, indicates the presence of inappropriately high oxygen consumption in the polycystic kidney.9 page(s
    corecore