13 research outputs found

    Dobutamine does not influence inflammatory pathways during human endotoxemia

    No full text
    OBJECTIVE: Catecholamines have anti-inflammatory and anticoagulant properties. Dobutamine is a synthetic catecholamine frequently used in patients with septic myocardial dysfunction. The objective was to determine whether a continuous infusion of dobutamine exerts immunomodulatory effects in healthy volunteers challenged with endotoxin. DESIGN: Prospective, open-label study. SETTING: Clinical research unit of a university hospital. PARTICIPANTS: Sixteen male healthy volunteers. INTERVENTIONS: Volunteers received a constant infusion with dobutamine (10 microg.kg.min, n = 8) or physiologic saline (n = 8). All participants were challenged with a bolus injection of endotoxin prepared from Escherichia coli (4 ng/kg). Dobutamine infusion was commenced 1 hr before endotoxin challenge and was continued until 3 hrs thereafter. MEASUREMENTS AND MAIN RESULTS: Dobutamine infusion was associated with an increase in mean arterial blood pressure (peak 122 +/- 5 mm Hg) and heart rate (peak 84 +/- 4 beats/min, both p < .05 vs. saline). Endotoxin injection induced the systemic release of cytokines (tumor necrosis factor-alpha, interleukins-6, -8, and -10) and secretory phospholipase A2, endothelial cell activation (increase in the plasma levels of soluble E-selectin and von Willebrand factor), activation of coagulation (increased plasma levels of soluble tissue factor, F1 + 2 prothrombin fragment, and thrombin-antithrombin complexes), and activation with subsequent inhibition of fibrinolysis (increased plasma concentrations of tissue-type plasminogen activator, plasminogen activator inhibitor type I, and plasmin-alpha2-antiplasmin complexes). None of these responses were influenced by dobutamine. CONCLUSIONS: Dobutamine, infused in a clinically relevant dose, does not influence inflammatory and coagulant pathways during human endotoxemi

    Differential dose-dependent effects of prednisolone on shedding of endothelial adhesion molecules during human endotoxemia

    No full text
    Low dose prednisolone was shown to be beneficial in the treatment of the Acute respiratory distress syndrome (ARDS) and septic shock. One corticosteroid-induced effect, postulated to mediate corticosteroid-induced anti-inflammatory effects, is decreased expression of adhesion molecules on endothelial cells, thereby preventing leukocyte recruitment at inflammatory sites. The current study aimed to investigate the effect of increasing doses of prednisolone on the release of soluble adhesion molecules in healthy volunteers challenged with endotoxin. Therefore, 32 healthy, male volunteers received prednisolone orally at doses of 0mg, 3mg, 10mg or 30mg at 2h before injection of endotoxin prepared from Escherichia coli (4ng/kg) and levels of soluble E-selectin (sE-selectin), soluble VCAM-1 (sVCAM-1) and soluble ICAM-1 (sICAM-1) were measured. Levels of all markers were increased after induction of endotoxemia. Levels of sE-selectin were inhibited by a dose of 3mg prednisolone and levels of sVCAM-1 were decreased after a dose of 10mg. Maximal inhibition of both sE-selectin and sVCAM-1 levels was achieved by the highest dose of prednisolone 30mg. Remarkably, prednisolone 3mg potentiated endotoxin-induced sVCAM-1 release. Levels of sICAM-1 were not affected by prednisolone. Together, the data suggest that prednisolone differentially and dose-dependently influences the release of soluble endothelial adhesion molecules during human endotoxemi

    Identification of anesthetic binding sites on human serum albumin using a novel etomidate photolabel

    No full text
    We have synthesized a novel analog of the general anesthetic etomidate in which the ethoxy group has been replaced by an azide group, and which can be used as a photolabel to identify etomidate binding sites. This acyl azide analog is a potent general anesthetic in both rats and tadpoles and, as with etomidate, is stereoselective in its actions, with the R(+) enantiomer being significantly more potent than the S(-) enantiomer. Its effects on alpha1beta2gamma2s GABA(A) receptors expressed in HEK-293 cells are virtually indistinguishable from the parent compound etomidate, showing stereoselective potentiation of GABA-induced currents, as well as direct mimetic effects at higher concentrations. In addition, a point mutation (beta2 N265M), which is known to attenuate the potentiating actions of etomidate, also blocks the effects of the acyl azide analog. We have investigated the utility of the analog to identify etomidate binding sites by using it to photolabel human serum albumin, a protein that binds approximately 75% of etomidate in human plasma and which is thought to play a major role in its pharmacokinetics. Using HPLC/mass spectrometry we have identified two anesthetic binding sites on HSA. One site is the well-characterized drug binding site I, located in HSA subdomain IIA, and the second site is also an established drug binding site located in subdomain IIIB, which also binds propofol. The acyl azide etomidate may prove to be a useful new photolabel to identify anesthetic binding sites on the GABA(A) receptor or other putative target

    The influence of corticosteroids on the release of novel biomarkers in human endotoxemia

    No full text
    OBJECTIVE: Sepsis intervention studies need better patient stratification methods, and one way to realize this is the introduction of stable biomarkers. A set of recently developed novel biomarkers, based upon precursor-fragments of short-lived hormones, was previously shown to be increased during sepsis. However, it is not known whether these biomarkers are influenced by sepsis intervention strategies. Therefore we investigated the markers in a model of human endotoxemia intervened by increasing doses of prednisolone. DESIGN AND SETTING: Prospective, open-label study in a specialized clinical research unit of a university hospital. SUBJECTS: Thirty-two healthy male volunteers. INTERVENTIONS: Subjects received prednisolone orally at doses of 0, 3, 10 or 30 mg (n=8 per group) at 2 h before intravenous injection of Escherichia coli lipopolysaccharide (LPS) (4 ng/kg). Blood samples were drawn during 24 h after LPS injection. MEASUREMENTS AND RESULTS: LPS injection caused an increase in levels of midregional pro-adrenomedullin (MR-proADM), midregional pro-atrial natriuretic peptide (MR-proANP), C-terminal pro-arginine-vasopressin (CT-proAVP) and procalcitonin (PCT). Prednisolone caused a dose dependent inhibition of MR-proADM, MR-proANP and CT-proAVP levels. CONCLUSIONS: These results show that a set of novel, highly stable sepsis biomarkers was increased during human endotoxemia and was dose-dependently inhibited by corticosteroid pre-treatmen

    Effects of prednisolone on the systemic release of mediators of cell-mediated cytotoxicity during human endotoxemia

    No full text
    Corticosteroids are widely used for the suppression of cell-mediated cytoxicity. This process is mediated by natural killer cells and cytotoxic T lymphocytes, and their activation can be monitored by levels of the chemokines CXCL9 and CXCL10, the degranulation product granzymes A and B, and by levels of secretory phospholipase A2. The current study aimed to determine the effects of increasing doses of prednisolone on the release of these mediators in healthy humans exposed to LPS. Therefore, 32 healthy men received prednisolone orally at doses of 0, 3, 10, or 30 mg (n = 8 per group) at 2 h before intravenous injection of Escherichia coil LPS (4 ng/kg). Prednisolone dose-dependently attenuated the LPS-induced rises in the plasma concentrations of the chemokines CXCL9 and CXCL10, as well as of granzymes A and B levels. CXCL10 and granzyme B release were most sensitive to prednisolone, with a significant inhibition already achieved at the lowest prednisolone dose (3 mg). The levels of secretory phospholipase A2 were increased after LPS administration but were not significantly affected by prednisolone. This study demonstrates that prednisolone differentially inhibits the systemic release of mediators involved in cell-mediated cytotoxicity in humans in viv

    Prednisolone dose-dependently influences inflammation and coagulation during human endotoxemia

    No full text
    The effects of steroids on the outcome of sepsis are dose dependent. Low doses appear to be beneficial, but high doses do not improve outcome for reasons that are insufficiently understood. The effects of steroids on systemic inflammation as a function of dose have not previously been studied in humans. To determine the effects of increasing doses of prednisolone on inflammation and coagulation in humans exposed to LPS, 32 healthy males received prednisolone orally at doses of 0, 3, 10, or 30 mg (n = 8 per group) at 2 h before i.v. injection of Escherichia coli LPS (4 ng/kg). Prednisolone dose-dependently inhibited the LPS-induced release of cytokines (TNF-alpha and IL-6) and chemokines (IL-8 and MCP-1), while enhancing the release of the anti-inflammatory cytokine IL-10. Prednisolone attenuated neutrophil activation (plasma elastase levels) and endothelial cell activation (von Willebrand factor). Most remarkably, prednisolone did not inhibit LPS-induced coagulation activation, measured by plasma concentrations of thrombin-antithrombin complexes, prothrombin fragment F1+2, and soluble tissue factor. In addition, activation of the fibrinolytic pathway (tissue-type plasminogen activator and plasmin-alpha(2)-antiplasmin complexes) was dose-dependently enhanced by prednisolone. These data indicate that prednisolone dose-dependently and differentially influences the systemic activation of different host response pathways during human endotoxemi

    Covalent cell surface functionalization of human fetal osteoblasts for tissue engineering.

    Get PDF
    The chemical functionalization of cell-surface proteins of human primary fetal bone cells with hydrophilic bioorthogonal intermediates was investigated. Toward this goal, chemical pathways were developed for click reaction-mediated coupling of alkyne derivatives with cellular azido-expressing proteins. The incorporation via a tetraethylene glycol linker of a dipeptide and a reporter biotin allowed the proof of concept for the introduction of cell-specific peptide ligands and to follow the reaction in living cells. Tuning the conditions of the click reaction resulted in chemical functionalization of living human fetal osteoblasts with excellent cell survival
    corecore