25 research outputs found

    Mechanically Derived Tissue Stromal Vascular Fraction Acts Anti-inflammatory on TNF Alpha-Stimulated Chondrocytes In Vitro

    Get PDF
    Enzymatically isolated stromal vascular fraction (SVF) has already shown to be effective as a treatment for osteoarthritis (OA). Yet, the use of enzymes for clinical purpose is highly regulated in many countries. Mechanical preparation of SVF results in a tissue-like SVF (tSVF) containing intact cell–cell connections including extracellular matrix (ECM) and is therefore less regulated. The purpose of this study was to investigate the immunomodulatory and pro-regenerative effect of tSVF on TNFα-stimulated chondrocytes in vitro. tSVF was mechanically derived using the Fractionation of Adipose Tissue (FAT) procedure. Characterization of tSVF was performed, e.g., cellular composition based on CD marker expression, colony forming unit and differentiation capacity after enzymatic dissociation (from heron referred to as tSVF-derived cells). Different co-cultures of tSVF-derived cells and TNFα-stimulated chondrocytes were analysed based on the production of sulphated glycosaminoglycans and the anti-inflammatory response of chondrocytes. Characterization of tSVF-derived cells mainly contained ASCs, endothelial cells, leukocytes and supra-adventitial cells. tSVF-derived cells were able to form colonies and differentiate into multiple cell lineages. Co-cultures with chondrocytes resulted in a shift of the ratio between tSVF cells: chondrocytes, in favor of chondrocytes alone (p < 0.05), and IL-1β and COX2 gene expression was upregulated in TNFα-treated chondrocytes. After treatment with (a conditioned medium of) tSVF-derived cells, IL-1β and COX2 gene expression was significantly reduced (p < 0.01). These results suggest mechanically derived tSVF stimulates chondrocyte proliferation while preserving the function of chondrocytes. Moreover, tSVF suppresses TNFα-stimulated chondrocyte inflammation in vitro. This pro-regenerative and anti-inflammatory effect shows the potential of tSVF as a treatment for osteoarthritis

    The clinical potential of articular cartilage-derived progenitor cells: a systematic review

    Get PDF
    Over the past two decades, evidence has emerged for the existence of a distinct population of endogenous progenitor cells in adult articular cartilage, predominantly referred to as articular cartilage-derived progenitor cells (ACPCs). This progenitor population can be isolated from articular cartilage of a broad range of species, including human, equine, and bovine cartilage. In vitro, ACPCs possess mesenchymal stromal cell (MSC)-like characteristics, such as colony forming potential, extensive proliferation, and multilineage potential. Contrary to bone marrow-derived MSCs, ACPCs exhibit no signs of hypertrophic differentiation and therefore hold potential for cartilage repair. As no unique cell marker or marker set has been established to specifically identify ACPCs, isolation and characterization protocols vary greatly. This systematic review summarizes the state-of-the-art research on this promising cell type for use in cartilage repair therapies. It provides an overview of the available literature on endogenous progenitor cells in adult articular cartilage and specifically compares identification of these cell populations in healthy and osteoarthritic (OA) cartilage, isolation procedures, in vitro characterization, and advantages over other cell types used for cartilage repair. The methods for the systematic review were prospectively registered in PROSPERO (CRD42020184775)

    The clinical potential of articular cartilage-derived progenitor cells: a systematic review

    Get PDF
    Over the past two decades, evidence has emerged for the existence of a distinct population of endogenous progenitor cells in adult articular cartilage, predominantly referred to as articular cartilage-derived progenitor cells (ACPCs). This progenitor population can be isolated from articular cartilage of a broad range of species, including human, equine, and bovine cartilage. In vitro, ACPCs possess mesenchymal stromal cell (MSC)-like characteristics, such as colony forming potential, extensive proliferation, and multilineage potential. Contrary to bone marrow-derived MSCs, ACPCs exhibit no signs of hypertrophic differentiation and therefore hold potential for cartilage repair. As no unique cell marker or marker set has been established to specifically identify ACPCs, isolation and characterization protocols vary greatly. This systematic review summarizes the state-of-the-art research on this promising cell type for use in cartilage repair therapies. It provides an overview of the available literature on endogenous progenitor cells in adult articular cartilage and specifically compares identification of these cell populations in healthy and osteoarthritic (OA) cartilage, isolation procedures, in vitro characterization, and advantages over other cell types used for cartilage repair. The methods for the systematic review were prospectively registered in PROSPERO (CRD42020184775)

    Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes

    Get PDF
    Objective Hsa-miR-148a expression is decreased in OA cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. Design OA chondrocytes were transfected with a miRNA precursor for hsa-miR-148a or a miRNA precursor negative control. After 3, 7, 14 and 21 days, real-time PCR was performed to examine gene expression levels of aggrecan (ACAN), type I, II, and X collagen (COL1A1, COL2A1, COl10A1), matrix metallopeptidase 13 (MMP13), a desintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and the serpin peptidase inhibitor, clade H (heat shock protein 47), member 1 (SERPINH1). After 3 weeks, DNA content and proteoglycan and collagen content and release were determined. Type II collagen was analyzed at the protein level by Western blot. Results Overexpression of hsa-miR-148a had no effect on ACAN, COL1A1 and SERPINH1 gene expression, but increased COL2A1 and decreased COL10A1, MMP13 and ADAMTS5 gene expression. Luciferase reporter assay confirmed direct interaction of miR-148a and COL10A1, MMP13 and ADAMTS5. The matrix deposited by the miR-148a overexpressing cells contained more proteoglycans and collagen, in particular type II collagen. Proteoglycan and collagen release into the culture medium was inhibited, but total collagen production was increased. Conclusion Overexpression of hsa-miR-148a inhibits hypertrophic differentiation and increases the production and deposition of type II collagen by OA chondrocytes, which is accompanied by an increased retention of proteoglycans. Hsa-miR-148a might be a potential disease-modifying compound in OA, as it promotes hyaline cartilage production

    Regenerative Musculoskeletal Care: Ensuring Practice Implementation

    Get PDF
    The first human cartilage cell transplantation, in 1987, opened the field of regenerative musculoskeletal care. The regenerative (r)evolution has transitioned into a “technovolution” in which ingenuity and creativity enable solutions that improve quality of life. Ongoing development of regenerative strategies showcases a recognized priority in musculoskeletal care. Initial regenerative therapies are successful; treatment options remain confined to trials in specialized clinics. Thus, new cellular regenerative therapies are being introduced, but adoption in daily practice remains elusive. Regenerative therapies are integral in advancing musculoskeletal care options. Science-driven clinical trial experience has informed best practices while recognizing limitations in product development plans and regulatory frameworks impeding seamless adoption. Transnational collaborative efforts are needed to ensure standardization and expedited implementation of clinically ready therapies

    Cell-based meniscus repair and regeneration: At the brink of clinical translation?: A systematic review of preclinical studies

    Get PDF
    Background: Meniscus damage can be caused by trauma or degeneration and is therefore common among patients of all ages. Repair or regeneration of the menisci could be of great importance not only for pain relief or regaining function but also to prevent degenerative disease and osteoarthritis. Current treatment does not offer consistent long-term improvement. Although preclinical research focusing on augmentation of meniscal tear repair and regeneration after meniscectomy is encouraging, clinical translation remains difficult. Purpose: To systematically evaluate the literature on in vivo meniscus regeneration and explore the optimal cell sources and conditions for clinical translation. We aimed at thorough evaluation of current evidence as well as clarifying the challenges for future preclinical and clinical studies. Study Design: Systematic review. Methods: A search was conducted using the electronic databases of MEDLINE, Embase, and the Cochrane Collaboration. Search terms included meniscus, regeneration, and cell-based. Results: After screening 81 articles based on title and abstract, 51 articles on in vivo meniscus regeneration could be included; 2 additional articles were identified from the references. Repair and regeneration of the meniscus has been described by intraarticular injection of multipotent mesenchymal stromal (stem) cells from adipose tissue, bone marrow, synovium, or meniscus or the use of these cell types in combination with implantable or injectable scaffolds. The use of fibrochondrocytes, chondrocytes, and transfected myoblasts for meniscus repair and regeneration is limited to the combination with different scaffolds. The comparative in vitro and in vivo studies mentioned in this review indicate that the use of allogeneic cells is as successful as the use of autologous cells. In addition, the implantation or injection of cell-seeded scaffolds increased tissue regeneration and led to better structural organization compared with scaffold implantation or injection of a scaffold alone. None of the studies mentioned in this review compare the effectiveness of different (cell-seeded) scaffolds. Conclusion: There is heterogeneity in animal models, cell types, and scaffolds used, and limited comparative studies are available. The comparative in vivo research that is currently available is insufficient to draw strong conclusions as to which cell type is the most promising. However, there is a vast amount of in vivo research on the use of different types of multipotent mesenchymal stromal (stem) cells in different experimental settings, and good results are reported in terms of tissue formation. None of these studies compare the effectiveness of different cell-scaffold combinations, making it hard to conclude which scaffold has the greatest potential

    Enzymatic Isolation of Articular Chondrons: Is It Much Different Than That of Chondrocytes?

    Get PDF
    In native articular cartilage, chondrocytes are completely capsulated by a pericellular matrix (PCM), together called the chondron. Due to its unique properties (w.r.t. territorial matrix) and importance in mechanotransduction, the PCM and chondron may be important in regenerative strategies. The current gold standard for the isolation of chondrons from cartilage dates from 1997. Although previous research already showed the low cell yield and the heterogeneity of the isolated populations, their compositions and properties have never been thoroughly characterized. This study aimed to compare enzymatic isolation methods for chondrocytes and chondrons and characterize the isolation efficiency and quality of the PCM. Bovine articular cartilage was digested according to the 5-hour gold standard chondron isolation method (0.3% dispase + 0.2% collagenase II), an overnight chondron isolation (0.15% dispase + 0.1% collagenase II), and an overnight chondrocyte isolation (0.15% collagenase II + 0.01% hyaluronidase). Type VI collagen staining, fluorescence-activated cell sorting (FACS) analysis, specific cell sorting and immunohistochemistry were performed using a type VI collagen staining, to study their isolation efficiency and quality of the PCM. These analyses showed a heterogeneous mixture of chondrocytes and chondrons for all three methods. Although the 5-hour chondron isolation resulted in the highest percentage of chondrons, the cell yield was significantly lower compared to the other isolation methods. FACS, based on the type VI collagen staining, successfully sorted the three identified cell populations. To maximize chondron yield and homogeneity, the overnight chondron enzymatic digestion method should be combined with type VI collagen staining and specific cell sorting
    corecore