3 research outputs found

    Dose-dependent regulation of horizontal cell fate by Onecut family of transcription factors

    No full text
    Genome duplication leads to an emergence of gene paralogs that are essentially free to undergo the process of neofunctionalization, subfunctionalization or degeneration (gene loss). Onecut1 (Oc1) and Onecut2 (Oc2) transcription factors, encoded by paralogous genes in mammals, are expressed in precursors of horizontal cells (HCs), retinal ganglion cells and cone photoreceptors. Previous studies have shown that ablation of eitherOc1orOc2gene in the mouse retina results in a decreased number of HCs, while simultaneous deletion ofOc1andOc2leads to a complete loss of HCs. Here we study the genetic redundancy betweenOc1andOc2paralogs and focus on how the dose of Onecut transcription factors influences abundance of individual retinal cell types and overall retina physiology. Our data show that reducing the number of functional Oc alleles in the developing retina leads to a gradual decrease in the number of HCs, progressive thinning of the outer plexiform layer and diminished electrophysiology responses. Taken together, these observations indicate that in the context of HC population, the alleles of Oc1/Oc2 paralogous genes are mutually interchangeable, function additively to support proper retinal function and their molecular evolution does not follow one of the typical routes after gene duplication

    Visualisation of gene expression within the context of tissues using an X-ray computed tomography-based multimodal approach

    No full text
    Abstract The development of an organism is orchestrated by the spatial and temporal expression of genes. Accurate visualisation of gene expression patterns in the context of the surrounding tissues offers a glimpse into the mechanisms that drive morphogenesis. We developed correlative light-sheet fluorescence microscopy and X-ray computed tomography approach to map gene expression patterns to the whole organism`s 3D anatomy. We show that this multimodal approach is applicable to gene expression visualized by protein-specific antibodies and fluorescence RNA in situ hybridisation offering a detailed understanding of individual phenotypic variations in model organisms. Furthermore, the approach offers a unique possibility to identify tissues together with their 3D cellular and molecular composition in anatomically less-defined in vitro models, such as organoids. We anticipate that the visual and quantitative insights into the 3D distribution of gene expression within tissue architecture, by multimodal approach developed here, will be equally valuable for reference atlases of model organisms development, as well as for comprehensive screens, and morphogenesis studies of in vitro models
    corecore