46 research outputs found
Overview of the future upgrade of the INFN-LNS superconducting cyclotron
The LNS Superconducting Cyclotron, named "Ciclotrone Superconduttore" (CS), has been in operation for more than 20 years. A wide range of ion species from hydrogen to lead, with energy in the range 10 to 80 AMeV, have been delivered to users. The maximum beam power is limited to 100 W due to the beam dissipation on the electrostatic deflectors. To fulfil the demand of users aiming at studying rare processes in nuclear physics, an upgrade of the cyclotron is necessarily intended to increase the intensity of ion beams with mass lower than 40 a.m.u. up to a power 10 kW. This will be achieved by means of extraction by stripping. This solution needs to replace the cryostat including the superconducting coils. The present capability of the cyclotron will be maintained, i.e. all the ion species allowed by the operating diagram will be available, being extracted by electrostatic extraction. In addition to the high power beams for nuclear physics, it will be possible to produce medical radioisotopes like 211At using an internal target
X-ray calibration of Dee voltage of radiofrequency cavity based on a low-power test
Radiofrequency cavity is one of the most critical and complicated components in a cyclotron. Dee voltage of radiofrequency cavity accelerates charged particles to achieve required energy. Peak voltage of Dee is the key parameter of an radiofrequency cavity. Balanced Dee voltage is very important for effective beam cantering and beam extracting. An X-ray measurement has been made to calibrate and verify the peak voltage of Dee in a low-power ( 20 kW) test. The X-ray measurement for radiofrequency cavity was designed by means of bremsstrahlung. A suitable shielding cover was chosen for radiofrequency cavity and the X-ray measurement design was demonstrated according to the theory of photon transmission. Finally, the peak voltage of Dee was obtained at the power of 10-20 kW and the balance of Dee voltage was verified
High intensity cyclotrons for neutrino physics
In recent years, the interest in high intensity proton beams in excess of
several milli-Amperes has risen. Potential applications are in neutrino
physics, materials and energy research, and isotope production. Continuous wave
proton beams of five to ten milli-Amperes are now in reach due to advances in
accelerator technology and through improved understanding of the beam dynamics.
As an example application, we present the proposed IsoDAR experiment, a search
for so-called sterile neutrinos and non-standard interaction using the KamLAND
detector located in Japan. We present updated sensitivities for this experiment
and describe in detail the design of the high intensity proton driver that uses
several novel ideas. These are: accelerating H2+ instead of protons, directly
injecting beam into the cyclotron via a Radio Frequency Quadrupole (RFQ), and
carefully matching the beam to achieve so-called vortex motion. The preliminary
design holds up well in PIC simulation studies and the injector system is now
being constructed, to be commissioned with a 1 MeV test cyclotron
ELIMED: MEDICAL APPLICATION AT ELI-BEAMLINES. STATUS OF THE COLLABORATION AND FIRST RESULTS
ELI-Beamlines is one of the four pillars of the ELI (Extreme Light Infrastructure) pan-European project. It will be an ultrahigh-intensity, high repetition-rate, femtosecond laser facility whose main goal is to generate and apply high-brightness X-ray sources and accelerated charged particles. In particular, medical applications are treated by the ELIMED task force, which has been launched by collaboration between ELI and INFN researchers. ELIMED aims to demonstrate the clinical applicability of laser accelerated ions. In this article, the state of the ELIMED project and the first scientific results are reported. The design and realisation of a preliminary beam handling system and of an advanced spectrometer for diagnostics of high energy (multi-MeV) laser-accelerated ion beams will also be briefly presented
First operations of the LNS heavy ions facility
Abstract A heavy ion facility is now available at Laboratorio Nazionale del Sud (LNS) of Catania. It can deliver beams with an energy up to 100 MeV/amu. The facility is based on a 15MV HVEC tandem and a K = 800 superconducting cyclotron as booster. During the last year, the facility came into operation. A 58Ni beam delivered by the tandem has been radially injected in the SC and then has been accelerated and extracted at 30 MeV/amu. In this paper the status of the facility together with the experience gained during the commissioning will be extensively reported
Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS
Abstract. The possibility to use a special class of heavy-ion induced direct reactions, such as double charge exchange reactions, is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay halflife. The methodology of the experimental campaign presently running at INFN - Laboratori Nazionali del Sud is reported and the experimental challenges characterizing such activity are describe
NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay
Neutrinoless double beta decay (0νββ) is considered the best potential resource to
access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are
their own anti-particles (Majorana particles). Presently, this physics case is one of the most
important research “beyond Standard Model” and might guide the way towards a Grand
Unified Theory of fundamental interactions.
Since the 0νββ decay process involves nuclei, its analysis necessarily implies nuclear structure
issues. In the NURE project, supported by a Starting Grant of the European Research Council
(ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extract
information on the 0νββ Nuclear Matrix Elements. In DCE reactions and ββ decay indeed the
initial and final nuclear states are the same and the transition operators have similar structure.
Thus the measurement of the DCE absolute cross-sections can give crucial information on ββ
matrix elements. In a wider view, the NUMEN international collaboration plans a major
upgrade of the INFN-LNS facilities in the next years in order to increase the experimental
production of nuclei of at least two orders of magnitude, thus making feasible a systematic
study of all the cases of interest as candidates for 0νββ
Study of an intrinsically safe infrastructure for training and research on nuclear technologies
Within European Partitioning & Transmutation research programs, infrastructures specifically dedicated to the study of fundamental reactor physics and engineering parameters of future fast-neutron-based reactors are very important, being some of these features not available in present zero-power prototypes. This presentation will illustrate the conceptual design of an Accelerator-Driven System with high safety standards, but ample flexibility for measurements. The design assumes as base option a 70MeV, 0.75mA proton cyclotron, as the one which will be installed at the INFN National Laboratory in Legnaro, Italy and a Beryllium target, with Helium gas as core coolant.
Safety is guaranteed by limiting the thermal power to 200 kW, with a neutron multiplication coefficient around 0.94, loading the core with fuel containing Uranium enriched at 20% inserted in a solid-lead diffuser. The small decay heat can be passively removed by thermal radiation from the vessel. Such a system could be used to study, among others, some specific aspects of neutron diffusion in lead, beam-core coupling, target cooling and could serve as a training facility