3 research outputs found

    Robotic repair of vesicovaginal fistulae with the transperitoneal-transvaginal approach: A case series

    Get PDF
    ABSTRACT ARTICLE INFO ______________________________________________________________ ______________________ Objective: To describe a novel technique of repairing the VVF using the transperitoneal-transvaginal approach. Materials and Methods: From June 2011 to October 2013, four patients with symptoms of urine leakage in the vagina underwent robotic repair of VVF with the transperitoneal-transvaginal approach. Cystoscopy revealed the fistula opening on the bladder. A ureteral stent was placed through the fistulous tract. After trocar placement, the omental flap was prepared and mobilized robotically. The vagina was identified and incised. The fistulous tract was excised. Cystorrhaphy was performed in two layers in an interrupted fashion. The vaginal opening was closed with running stitches. The omentum was interposed and anchored between the bladder and vagina. Finally, the ureteral catheters were removed in case they have been placed, and an 18 Fr urethral catheter was removed on the 14th postoperative day. Results: The mean age was 46 years (range: 41 to 52 years). The mean fistula diameter was 1.5 cm (range 0.3 to 2 cm). The mean operative time was 117.5 min (range: 100 to 150 min). The estimated blood loss was 100 mL (range: 50 to 150 mL). The mean hospital stay was 1.75 days (range: 1 to 3 days). The mean Foley catheter duration was 15.75 days (range: 10 to 25 days). There was no evidence of recurrence in any of the cases. Conclusions: The robot-assisted laparoscopic transperitoneal transvaginal approach for VVF is a feasible procedure when the fistula tract is identified by first intentionally opening the vagina, thereby minimizing the bladder incision and with low morbidity

    Avoiding and managing vascular injury during robotic-assisted radical prostatectomy

    No full text
    There has been an increase in the number of urologic procedures performed robotically assisted; this is the case for radical prostatectomy. Currently, in the USA, 67% of prostatectomies are performed robotically assisted. With this increase in robotic urologic surgery it is clear that there are more surgeons in their learning curve, where most of the complications occur. Among the complications that can occur are vascular injuries. These can occur in the initial stages of surgery, such as in accessing the abdominal cavity, as well as in the intraoperative or postoperative setting. We present the most common vascular injuries in robot-assisted radical prostatectomy, as well as their management and prevention. We believe that it is of vital importance to be able to recognize these injuries so that they can be prevented
    corecore