1,758 research outputs found
Ranking systemically important financial institutions
We propose a simple networkâbased methodology for ranking systemically important financial institutions. We view the risks of firms âincluding both the financial sector and the real economyâ as a network with nodes representing the volatility shocks. The metric for the connections of the nodes is the correlation between these shocks. Daily dynamic centrality measures allow us to rank firms in terms of risk connectedness and firm characteristics. We present a general systemic risk index for the financial sector. Results from applying this approach to all firms in the S&P500 for 2003â2011 are twofold. First, Bank of America, JP Morgan and Wells Fargo are consistently in the top 10 throughout the sample. Citigroup and Lehman Brothers also were consistently in the top 10 up to late 2008. At the end of the sample, insurance firms emerge as systemic. Second, the systemic risk in the financial sector builtâup from early 2005, peaked in September 2008, and greatly reduced after the introduction of TARP and the rescue of AIG. Anxiety about European debt markets saw the systemic risk begin to rise again from April 2010. We further decompose these results to find that the systemic risk of insurance and depositâtaking institutions differs importantly, the latter experienced a decline from late 2007, in line with the burst of the housing price bubble, while the former continued to climb up to the rescue of AIG
Long-term durability assessment of PVC-P waterproofing geomembranes through laboratory tests
Waterproofing heavily influences the operation and maintenance costs of underground structures. Currently, the most commonly used technology for tunnel waterproofing is plasticized polyvinyl chloride (PVC-P) geomembranes. However, not much is known about the long-term durability of these geomembranes, especially in relation to the long expected lifespan of new tunnels (i.e. 100â150 years). Therefore, in this paper, the durability of two commercially available PVC-P geomembranes is studied with the help of a specifically designed accelerated ageing device in addition to mechanical and absorption tests. The degradation resulting from plasticizer loss is extrapolated to the long term, and a threshold value for the end-of-life of the PVC-P geomembrane is estimated from the mechanical tests
Organic Carbon Burial following the Middle Eocene Climatic Optimum (MECO) in the central - western Tethys
We present trace metal geochemistry and stable isotope records for the middle Eocene Alano di Piave section, NE Italy, deposited during magnetochron C18n in the marginal Tethys Ocean. We identify a 500 kyr long carbon isotope perturbation event we infer to be the middle Eocene Climatic Optimum (MECO) confirming the northern hemisphere expression and global occurrence of MECO. Interpreted peak climatic conditions are followed by the rapid deposition of two organic rich intervals (3\% TOC) and contemporaneous positive C excursions. These two intervals are associated with increases in the concentration of sulphur and redox-sensitive trace metals, and low concentrations of Mn, as well as coupled with the occurrence of pyrite. Together these changes imply low, possibly dysoxic, bottom water O conditions promoting increased organic carbon burial. We hypothesize that this rapid burial of organic carbon lowered global {\it p}CO following the peak warming and returned the climate system to the general Eocene cooling trend
Surfing through the GFC : systemic risk in Australia
We provide empirical evidence on the degree of systemic risk in Australia before,
during and after the Global Financial Crisis. We calculate a daily index of systemic
risk from 2004 to 2013 in order to understand how real economy firms influence the
outcomes for the rest of the economy. This is done via a mapping of the interconnectedness
of the financial and non-financial sectors. The financial sector is in general the
home to the most consistently systemically risky firms in the economy. The mining
sector becomes occasionally as systemically risky as the financial sector, reflecting the
importance of understanding the interrelationships between the financial sector and
the real economy in monitoring systemic risks
Comparison of the Results of Analytical and Numerical Models of Pre-Reinforcement in Shallow Tunnels
AbstractThe steel pipe umbrella is a widely used technology when tunnelling in weak soils in order to create pre-support ahead of the tunnel face. The design of steel pipes is frequently done through simplified analytical approaches which are easy to apply but require proper assessment of the loads acting on the pipe. To provide information on this key design aspect, the results of the comparison between a three-dimensional numerical model developed with the code FLAC 3D and an analytical model based on the approach of a beam on yielding supports is presented and discussed. The comparison refers to a shallow tunnel with an overburden of three times its diameter for two different types of weak rock masses. The obtained results provide suggestions about the load that has to be applied in the analytical model for the design phase
The isolation of VCAM-1+ endothelial cell-derived extracellular vesicles using microfluidics
Background: Vascular cell adhesion molecule-1 (VCAM-1+) endothelial cell-derived extracellular vesicles (EC-EVs) are augmented in cardiovascular disease, where they can signal the deployment of immune cells from the splenic reserve. Endothelial cells in culture activated with pro-inflammatory tumor necrosis factor-α (TNF-a) also release VCAM-1+ EC-EVs. However, isolating VCAM-1+ EC-EVs from conditioned cell culture media for subsequent in-depth analysis remains challenging.
Aim:Â We utilized the extracellular vesicles (EV) microfluidics herringbone chip (EVHB-Chip), coated with anti-VCAM-1 antibodies, for selective capture of VCAM-1+Â cells and EC-EVs.
Methods and Results: Engineered EA.hy926 endothelial cells overexpressing VCAM-1 (P < 0.001 versus control) showed increased binding to the VCAM-1- EVHB-Chip versus an IgG device. TNF-α-stimulated human umbilical cord vein endothelial cells (HUVECs) exhibited elevated VCAM-1 protein levels (P < 0.001) and preferential binding to the VCAM-1- EVHB-Chip versus the IgG device. HUVECs stimulated with TNF-α showed differential gene expression of intercellular adhesion molecule-1 (ICAM-1) (P < 0.001) and VCAM-1 (P < 0.001) by digital droplet PCR versus control cells. HUVEC-derived EC-EVs were positive for CD9, CD63, HSP70, and ALIX and had a modal size of 83.5 nm. Control and TNF-α-stimulated HUVEC-derived EC-EV cultures were captured on the VCAM-1- EVHB-Chip, demonstrating selective capture. VCAM-1+ EC-EV were significantly enriched for ICAM-1 (P < 0.001) mRNA transcripts.
Conclusion: This study presents a novel approach using the EVHB-Chip, coated with anti-VCAM-1 antibodies and digital droplet PCR for the study of VCAM-1+ EC-EVs. Isolation of VCAM-1+ EC-EV from heterogeneous sources such as conditioned cell culture media holds promise for subsequent detailed characterization, and may facilitate the study of VCAM-1+ EC-EVs in cardiovascular and metabolic diseases, for disease monitoring and therapeutic insights
Mean Arterial Pressure (MAP) Trial: study protocol for a multicentre, randomized, controlled trial to compare three different strategies of mean arterial pressure management during cardiopulmonary bypass.
Background: One of the main goals of cardiopulmonary bypass (CPB) is targeting an adequate mean arterial pressure (MAP) during heart surgery, in order to maintain appropriate perfusion pressures in all end-organs. As inheritance of early studies, a value of 50-60 mmHg has been historically accepted as the "gold standard" MAP. However, in the last decades, the CPB management has remarkably changed, thanks to the evolution of technology and the availability of new biomaterials. Therefore, as highlighted by the latest European Guidelines, the current management of CPB can no longer refer to those pioneering studies. To date, only few single-centre studies have compared different strategies of MAP management during CPB, but with contradictory findings and without achieving a real consensus. Therefore, what should be the ideal strategy of MAP management during CPB is still on debate. This trial is the first multicentre, randomized, controlled study which compares three different strategies of MAP management during the CPB. Methods: We described herein the methodology of a multicentre, randomized, controlled trial comparing three different approaches to MAP management during CPB in patients undergoing elective cardiac surgery: the historically accepted "standard MAP" (50-60 mmHg), the "high MAP" (70-80 mmHg) and the "patient-tailored MAP" (comparable to the patient's preoperative MAP). It is the aim of the study to find the most suitable management in order to obtain the most adequate perfusion of end-organs during cardiac surgery. For this purpose, the primary endpoint will be the peak of serum lactate (Lmax) released during CPB, as index of tissue hypoxia. The secondary outcomes will include all the intraoperative parameters of tissue oxygenation and major postoperative complications related to organ malperfusion. Discussion: This trial will assess the best strategy to target the MAP during CPB, thus further improving the outcomes of cardiac surgery
Cohort-based T-SSIM Visual Computing for Radiation Therapy Prediction and Exploration
We describe a visual computing approach to radiation therapy (RT) planning,
based on spatial similarity within a patient cohort. In radiotherapy for head
and neck cancer treatment, dosage to organs at risk surrounding a tumor is a
large cause of treatment toxicity. Along with the availability of patient
repositories, this situation has lead to clinician interest in understanding
and predicting RT outcomes based on previously treated similar patients. To
enable this type of analysis, we introduce a novel topology-based spatial
similarity measure, T-SSIM, and a predictive algorithm based on this similarity
measure. We couple the algorithm with a visual steering interface that
intertwines visual encodings for the spatial data and statistical results,
including a novel parallel-marker encoding that is spatially aware. We report
quantitative results on a cohort of 165 patients, as well as a qualitative
evaluation with domain experts in radiation oncology, data management,
biostatistics, and medical imaging, who are collaborating remotely.Comment: IEEE VIS (SciVis) 201
- âŠ