56 research outputs found

    Assessment of cellular cobalamin metabolism in Gaucher disease

    Get PDF
    Background: Gaucher disease (GD) is a lysosomal disorder caused by biallelic pathogenic mutations in the GBA1 gene that encodes beta-glucosidase (GCase), and more rarely, by a deficiency in the GCase activator, saposin C. Clinically, GD manifests with heterogeneous multiorgan involvement mainly affecting hematological, hepatic and neurological axes. This disorder is divided into three types, based on the absence (type I) or presence and severity (types II and III) of involvement of the central nervous system. At the cellular level, deficiency of GBA1 disturbs lysosomal storage with buildup of glucocerebroside. The consequences of disturbed lysosomal metabolism on biochemical pathways that require lysosomal processing are unknown. Abnormal systemic markers of cobalamin (Cbl, B12) metabolism have been reported in patients with GD, suggesting impairments in lysosomal handling of Cbl or in its downstream utilization events. Methods: Cultured skin fibroblasts from control humans (n = 3), from patients with GD types I (n = 1), II (n = 1) and III (n = 1) and an asymptomatic carrier of GD were examined for their GCase enzymatic activity and lysosomal compartment intactness. Control human and GD fibroblasts were cultured in growth medium with and without 500 nM hydroxocobalamin supplementation. Cellular cobalamin status was examined via determination of metabolomic markers in cell lysate (intracellular) and conditioned culture medium (extracellular). The presence of transcobalamin (TC) in whole cell lysates was examined by Western blot. Results: Cultured skin fibroblasts from GD patients exhibited reduced GCase activity compared to healthy individuals and an asymptomatic carrier of GD, demonstrating a preserved disease phenotype in this cell type. The concentrations of total homocysteine (tHcy), methylmalonic acid (MMA), cysteine (Cys) and methionine (Met) in GD cells were comparable to control levels, except in one patient with GD III. The response of these metabolomic markers to supplementation with hydroxocobalamin (HOCbl) yielded variable results. The content of transcobalamin in whole cell lysates was comparable in control human and GD patients. Conclusions: Our results indicate that cobalamin transport and cellular processing pathways are overall protected from lysosomal storage damage in GD fibroblasts. Extending these studies to hepatocytes, macrophages and plasma will shed light on cell- and compartment-specific vitamin B12 metabolism in Gaucher disease

    Improved inflammatory bowel disease, wound healing and normal oxidative burst under treatment with empagliflozin in glycogen storage disease type Ib

    Get PDF
    BACKGROUND: Glycogen storage disease type Ib (GSD Ib) is a rare inborn error of glycogen metabolism due to mutations in SLC37A4. Besides a severe form of fasting intolerance, the disorder is usually associated with neutropenia and neutrophil dysfunction causing serious infections, inflammatory bowel disease, oral, urogenital and perianal lesions as well as impaired wound healing. Recently, SGLT2 inhibitors such as empagliflozin that reduce the plasma levels of 1,5-anhydroglucitol have been described as a new treatment option for the neutropenia and neutrophil dysfunction in patients with GSD Ib. RESULTS: We report on a 35-year-old female patient with GSD Ib who had been treated with G-CSF for neutropenia since the age of 9. She had a large chronic abdominal wound as a consequence of recurrent operations due to complications of her inflammatory bowel disease. Treatment with 20 mg empagliflozin per day resulted in normalisation of the neutrophil count and neutrophil function even after termination of G-CSF. The chronic abdominal wound that had been unchanged for 2 years before the start of empagliflozin nearly closed within 12 weeks. No side effects of empagliflozin were observed. CONCLUSION: SGLT2 inhibitors are a new and probably safe treatment option for GSD Ib-associated neutropenia and neutrophil dysfunction. We hypothesize that restoration of neutrophil function and normalisation of neutrophil apoptosis leads to improvement of wound healing and ameliorates symptoms of inflammatory bowel disease

    Elevated holo-transcobalamin in Gaucher disease type II : a case report

    Get PDF
    Gaucher disease (GD), one of the most common lysosomal disorders, is caused by deficiency of β-glucocerebrosidase. Based on the presence and severity of neurological complications, GD is classified into types I, II (the most severe form), and III. Abnormalities in systemic markers of vitamin B12 (B12) metabolism have been reported in GD type I patients, suggesting a higher prevalence of B12 deficiency in these patients. A 2-month-old male with GD type II was admitted to the hospital presenting jaundice, hepatosplenomegaly, and ichthyosis. At admission, cholestasis and ascites, abnormal liver function enzymes, prolonged prothrombin time, and high levels of B12 were confirmed. Analysis of biomarkers of B12 status revealed elevated B12 and holo-transcobalamin (holo-TC) levels. The B12 profile found in our patient is the opposite to what is described for GD type I patients. Holo-TC may increase in inflammatory states or due to liver diseases. In GD, the accumulation of glucocerebroside may be a trigger that initiates a systemic inflammatory reaction, characterized by macrophage activation. We suggest higher levels of holo-TC could be associated with a more severe (neuronopathic) GD, and be a biomarker of GD type II

    Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37

    Get PDF
    The importance of fatty acid (FA) metabolism in cancer is well-established, yet the mechanisms underlying metabolic reprogramming remain elusive. Here, we identify tetraspanin CD37, a prognostic marker for aggressive B-cell lymphoma, as essential membrane-localized inhibitor of FA metabolism. Deletion of CD37 on lymphoma cells results in increased FA oxidation shown by functional assays and metabolomics. Furthermore, CD37-negative lymphomas selectively deplete palmitate from serum in mouse studies. Mechanistically, CD37 inhibits the FA transporter FATP1 through molecular interaction. Consequently, deletion of CD37 induces uptake and processing of exogenous palmitate into energy and essential building blocks for proliferation, and inhibition of FATP1 reverses this phenotype. Large lipid deposits and intracellular lipid droplets are observed in CD37-negative lymphoma tissues of patients. Moreover, inhibition of carnitine palmitoyl transferase 1 A significantly compromises viability and proliferation of CD37-deficient lymphomas. Collectively, our results identify CD37 as a direct gatekeeper of the FA metabolic switch in aggressive B-cell lymphoma

    Enolase represents a metabolic checkpoint controlling the differential exhaustion programmes of hepatitis virus-specific CD8 + T cells

    Get PDF
    Objective: Exhausted T cells with limited effector function are enriched in chronic hepatitis B and C virus (HBV and HCV) infection. Metabolic regulation contributes to exhaustion, but it remains unclear how metabolism relates to different exhaustion states, is impacted by antiviral therapy, and if metabolic checkpoints regulate dysfunction. Design: Metabolic state, exhaustion and transcriptome of virus-specific CD8+ T cells from chronic HBV-infected (n=31) and HCV-infected patients (n=52) were determined ex vivo and during direct-acting antiviral (DAA) therapy. Metabolic flux and metabolic checkpoints were tested in vitro. Intrahepatic virus-specific CD8+ T cells were analysed by scRNA-Seq in a HBV-replicating murine in vivo model of acute and chronic infection. Results: HBV-specific (core18-27, polymerase455-463) and HCV-specific (NS31073-1081, NS31406-1415, NS5B2594-2602) CD8+ T cell responses exhibit heterogeneous metabolic profiles connected to their exhaustion states. The metabolic state was connected to the exhaustion profile rather than the aetiology of infection. Mitochondrial impairment despite intact glucose uptake was prominent in severely exhausted T cells linked to elevated liver inflammation in chronic HCV infection and in HBV polymerase455-463 -specific CD8+ T cell responses. In contrast, relative metabolic fitness was observed in HBeAg-negative HBV infection in HBV core18-27-specific responses. DAA therapy partially improved mitochondrial programmes in severely exhausted HCV-specific T cells and enriched metabolically fit precursors. We identified enolase as a metabolic checkpoint in exhausted T cells. Metabolic bypassing improved glycolysis and T cell effector function. Similarly, enolase deficiency was observed in intrahepatic HBV-specific CD8+ T cells in a murine model of chronic infection. Conclusion: Metabolism of HBV-specific and HCV-specific T cells is strongly connected to their exhaustion severity. Our results highlight enolase as metabolic regulator of severely exhausted T cells. They connect differential bioenergetic fitness with distinct exhaustion subtypes and varying liver disease, with implications for therapeutic strategies

    Molecular Basis of Redox Signaling

    Get PDF
    Oxidants are produced in physiological and pathological conditions. The production of reactive nitrogen and oxygen species (RNS and ROS, respectively) can lead to vastly different cellular outcomes depending on their subcellular location, half-life, reactivity, gradients, and the antioxidant defenses. While oxidative stress caused by general oxidative damage is often nonspecific and linked to cell death by necrosis, at lower concentrations, ROS and RNS can act as second messengers regulating redox-sensitive signaling pathways, which elicit very specific cellular responses [1, 2]. Redox signaling is an intrinsic, tightly regulated component of cell metabolism, controlling cell growth, differentiation, and death. The interplay between the production of oxidants and the antioxidant defenses is highly regulated to maintain cellular redox homeostasis [3, 4]; thus, its dysregulation underlies many pathological conditions, including cancer, neurodegeneration, and cardiovascular and metabolic diseases. This special issue is focused on redox signaling in pathology and developments in redox-based therapies.Fil: Franco, Maria Clara. State University of Oregon; Estados UnidosFil: Carreras, Maria Cecilia. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Departamento de BioquĂ­mica ClĂ­nica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Hannibal, Luciana. Albert Ludwigs University of Freiburg; Alemani

    The X-Ray Crystal Structure of Glutathionylcobalamin Revealed

    No full text

    Molecular Basis of Redox Signaling

    No full text

    Biosynthesis, Quantification and Genetic Diseases of the Smallest Signaling Thiol Metabolite: Hydrogen Sulfide

    No full text
    Hydrogen sulfide (H2S) is a gasotransmitter and the smallest signaling thiol metabolite with important roles in human health. The turnover of H2S in humans is mainly governed by enzymes of sulfur amino acid metabolism and also by the microbiome. As is the case with other small signaling molecules, disease-promoting effects of H2S largely depend on its concentration and compartmentalization. Genetic defects that impair the biogenesis and catabolism of H2S have been described; however, a gap in knowledge remains concerning physiological steady-state concentrations of H2S and their direct clinical implications. The small size and considerable reactivity of H2S renders its quantification in biological samples an experimental challenge. A compilation of methods currently employed to quantify H2S in biological specimens is provided in this review. Substantial discrepancy exists in the concentrations of H2S determined by different techniques. Available methodologies permit end-point measurement of H2S concentration, yet no definitive protocol exists for the continuous, real-time measurement of H2S produced by its enzymatic sources. We present a summary of available animal models, monogenic diseases that impair H2S metabolism in humans including structure-function relationships of pathogenic mutations, and discuss possible approaches to overcome current limitations of study
    • …
    corecore