18 research outputs found

    Privacy-Preserving Medical Image Classification through Deep Learning and Matrix Decomposition

    Full text link
    Deep learning (DL)-based solutions have been extensively researched in the medical domain in recent years, enhancing the efficacy of diagnosis, planning, and treatment. Since the usage of health-related data is strictly regulated, processing medical records outside the hospital environment for developing and using DL models demands robust data protection measures. At the same time, it can be challenging to guarantee that a DL solution delivers a minimum level of performance when being trained on secured data, without being specifically designed for the given task. Our approach uses singular value decomposition (SVD) and principal component analysis (PCA) to obfuscate the medical images before employing them in the DL analysis. The capability of DL algorithms to extract relevant information from secured data is assessed on a task of angiographic view classification based on obfuscated frames. The security level is probed by simulated artificial intelligence (AI)-based reconstruction attacks, considering two threat actors with different prior knowledge of the targeted data. The degree of privacy is quantitatively measured using similarity indices. Although a trade-off between privacy and accuracy should be considered, the proposed technique allows for training the angiographic view classifier exclusively on secured data with satisfactory performance and with no computational overhead, model adaptation, or hyperparameter tuning. While the obfuscated medical image content is well protected against human perception, the hypothetical reconstruction attack proved that it is also difficult to recover the complete information of the original frames.Comment: 6 pages, 9 figures, Published in: 2023 31st Mediterranean Conference on Control and Automation (MED

    Generation of Radiology Findings in Chest X-Ray by Leveraging Collaborative Knowledge

    Full text link
    Among all the sub-sections in a typical radiology report, the Clinical Indications, Findings, and Impression often reflect important details about the health status of a patient. The information included in Impression is also often covered in Findings. While Findings and Impression can be deduced by inspecting the image, Clinical Indications often require additional context. The cognitive task of interpreting medical images remains the most critical and often time-consuming step in the radiology workflow. Instead of generating an end-to-end radiology report, in this paper, we focus on generating the Findings from automated interpretation of medical images, specifically chest X-rays (CXRs). Thus, this work focuses on reducing the workload of radiologists who spend most of their time either writing or narrating the Findings. Unlike past research, which addresses radiology report generation as a single-step image captioning task, we have further taken into consideration the complexity of interpreting CXR images and propose a two-step approach: (a) detecting the regions with abnormalities in the image, and (b) generating relevant text for regions with abnormalities by employing a generative large language model (LLM). This two-step approach introduces a layer of interpretability and aligns the framework with the systematic reasoning that radiologists use when reviewing a CXR.Comment: Information Technology and Quantitative Management (ITQM 2023

    Applying Deep Neural Networks over Homomorphic Encrypted Medical Data

    No full text
    In recent years, powered by state-of-the-art achievements in a broad range of areas, machine learning has received considerable attention from the healthcare sector. Despite their ability to provide solutions within personalized medicine, strict regulations on the confidentiality of patient health information have in many cases hindered the adoption of deep learning-based solutions in clinical workflows. To allow for the processing of sensitive health information without disclosing the underlying data, we propose a solution based on fully homomorphic encryption (FHE). The considered encryption scheme, MORE (Matrix Operation for Randomization or Encryption), enables the computations within a neural network model to be directly performed on floating point data with a relatively small computational overhead. We consider the well-known MNIST digit recognition problem to evaluate the feasibility of the proposed method and show that performance does not decrease when deep learning is applied on MORE homomorphic data. To further evaluate the suitability of the method for healthcare applications, we first train a model on encrypted data to estimate the outputs of a whole-body circulation (WBC) hemodynamic model and then provide a solution for classifying encrypted X-ray coronary angiography medical images. The findings highlight the potential of the proposed privacy-preserving deep learning methods to outperform existing approaches by providing, within a reasonable amount of time, results equivalent to those achieved by unencrypted models. Lastly, we discuss the security implications of the encryption scheme and show that while the considered cryptosystem promotes efficiency and utility at a lower security level, it is still applicable in certain practical use cases

    Generative Adversarial CT Volume Extrapolation for Robust Small-to-Large Field of View Registration

    No full text
    Intraoperative Computer Tomographs (iCT) provide near real time visualizations which can be registered with high-quality preoperative images to improve the confidence of surgical instrument navigation. However, intraoperative images have a small field of view making the registration process error prone due to the reduced amount of mutual information. We herein propose a method to extrapolate thin acquisitions as a prior step to registration, to increase the field of view of the intraoperative images, and hence also the robustness of the guiding system. The method is based on a deep neural network which is trained adversarially using self-supervision to extrapolate slices from the existing ones. Median landmark detection errors are reduced by approximately 40%, yielding a better initial alignment. Furthermore, the intensity-based registration is improved; the surface distance errors are reduced by an order of magnitude, from 5.66 mm to 0.57 mm (p-value = 4.18×10−6). The proposed extrapolation method increases the registration robustness, which plays a key role in guiding the surgical intervention confidently

    Generative Adversarial CT Volume Extrapolation for Robust Small-to-Large Field of View Registration

    No full text
    Intraoperative Computer Tomographs (iCT) provide near real time visualizations which can be registered with high-quality preoperative images to improve the confidence of surgical instrument navigation. However, intraoperative images have a small field of view making the registration process error prone due to the reduced amount of mutual information. We herein propose a method to extrapolate thin acquisitions as a prior step to registration, to increase the field of view of the intraoperative images, and hence also the robustness of the guiding system. The method is based on a deep neural network which is trained adversarially using self-supervision to extrapolate slices from the existing ones. Median landmark detection errors are reduced by approximately 40%, yielding a better initial alignment. Furthermore, the intensity-based registration is improved; the surface distance errors are reduced by an order of magnitude, from 5.66 mm to 0.57 mm (p-value = 4.18×10−6). The proposed extrapolation method increases the registration robustness, which plays a key role in guiding the surgical intervention confidently

    Distinctive Morphological Patterns of Complicated Coronary Plaques in Acute Coronary Syndromes: Insights from an Optical Coherence Tomography Study

    No full text
    Optical coherence tomography (OCT) is an ideal imaging technique for assessing culprit coronary plaque anatomy. We investigated the morphological features and mechanisms leading to plaque complication in a single-center observational retrospective study on 70 consecutive patients with an established diagnosis of acute coronary syndrome (ACS) who underwent OCT imaging after coronary angiography. Three prominent morphological entities were identified. Type I or intimal discontinuity, which was found to be the most common mechanism leading to ACS and was seen in 35 patients (50%), was associated with thrombus (68.6%; p = 0.001), mostly affected the proximal plaque segment (60%; p = 0.009), and had no distinctive underlying plaque features. Type II, a significant stenosis with vulnerability features (inflammation in 16 patients, 84.2%; thin-cap fibroatheroma (TCFA) in 10 patients, 52.6%) and a strong association with lipid-rich plaques (94.7%; p = 0.002), was observed in 19 patients (27.1%). Type III, a protrusive calcified nodule, which was found to be the dominant morphological pattern in 16 patients (22.9%), was found in longer plaques (20.8 mm vs. 16.8 mm ID vs. 12.4 mm SS; p = 0.04) and correlated well with TCFA (93.8%; p = 0.02) and inflammation (81.3%). These results emphasize the existence of a wide spectrum of coronary morphological patterns related to ACS

    Privacy Preserving Classification of EEG Data Using Machine Learning and Homomorphic Encryption

    No full text
    Data privacy is a major concern when accessing and processing sensitive medical data. A promising approach among privacy-preserving techniques is homomorphic encryption (HE), which allows for computations to be performed on encrypted data. Currently, HE still faces practical limitations related to high computational complexity, noise accumulation, and sole applicability the at bit or small integer values level. We propose herein an encoding method that enables typical HE schemes to operate on real-valued numbers of arbitrary precision and size. The approach is evaluated on two real-world scenarios relying on EEG signals: seizure detection and prediction of predisposition to alcoholism. A supervised machine learning-based approach is formulated, and training is performed using a direct (non-iterative) fitting method that requires a fixed and deterministic number of steps. Experiments on synthetic data of varying size and complexity are performed to determine the impact on runtime and error accumulation. The computational time for training the models increases but remains manageable, while the inference time remains in the order of milliseconds. The prediction performance of the models operating on encoded and encrypted data is comparable to that of standard models operating on plaintext data

    Obfuscation Algorithm for Privacy-Preserving Deep Learning-Based Medical Image Analysis

    No full text
    Deep learning (DL)-based algorithms have demonstrated remarkable results in potentially improving the performance and the efficiency of healthcare applications. Since the data typically needs to leave the healthcare facility for performing model training and inference, e.g., in a cloud based solution, privacy concerns have been raised. As a result, the demand for privacy-preserving techniques that enable DL model training and inference on secured data has significantly grown. We propose an image obfuscation algorithm that combines a variational autoencoder (VAE) with random non-bijective pixel intensity mapping to protect the content of medical images, which are subsequently employed in the development of DL-based solutions. A binary classifier is trained on secured coronary angiographic frames to evaluate the utility of obfuscated images in the context of model training. Two possible attack configurations are considered to assess the security level against artificial intelligence (AI)-based reconstruction attempts. Similarity metrics are employed to quantify the security against human perception (structural similarity index measure and peak signal-to-noise-ratio). Furthermore, expert readers performed a visual assessment to determine to what extent the reconstructed images are protected against human perception. The proposed algorithm successfully enables DL model training on obfuscated images with no significant computational overhead while ensuring protection against human eye perception and AI-based reconstruction attacks. Regardless of the threat actor’s prior knowledge of the target content, the coronary vessels cannot be entirely recovered through an AI-based attack. Although a drop in accuracy can be observed when the classifier is trained on obfuscated images, the performance is deemed satisfactory in the context of a privacy–accuracy trade-off

    Obfuscation Algorithm for Privacy-Preserving Deep Learning-Based Medical Image Analysis

    No full text
    Deep learning (DL)-based algorithms have demonstrated remarkable results in potentially improving the performance and the efficiency of healthcare applications. Since the data typically needs to leave the healthcare facility for performing model training and inference, e.g., in a cloud based solution, privacy concerns have been raised. As a result, the demand for privacy-preserving techniques that enable DL model training and inference on secured data has significantly grown. We propose an image obfuscation algorithm that combines a variational autoencoder (VAE) with random non-bijective pixel intensity mapping to protect the content of medical images, which are subsequently employed in the development of DL-based solutions. A binary classifier is trained on secured coronary angiographic frames to evaluate the utility of obfuscated images in the context of model training. Two possible attack configurations are considered to assess the security level against artificial intelligence (AI)-based reconstruction attempts. Similarity metrics are employed to quantify the security against human perception (structural similarity index measure and peak signal-to-noise-ratio). Furthermore, expert readers performed a visual assessment to determine to what extent the reconstructed images are protected against human perception. The proposed algorithm successfully enables DL model training on obfuscated images with no significant computational overhead while ensuring protection against human eye perception and AI-based reconstruction attacks. Regardless of the threat actor’s prior knowledge of the target content, the coronary vessels cannot be entirely recovered through an AI-based attack. Although a drop in accuracy can be observed when the classifier is trained on obfuscated images, the performance is deemed satisfactory in the context of a privacy–accuracy trade-off

    An Automated Workflow for Hemodynamic Computations in Cerebral Aneurysms

    No full text
    In recent years, computational fluid dynamics (CFD) has become a valuable tool for investigating hemodynamics in cerebral aneurysms. CFD provides flow-related quantities, which have been shown to have a potential impact on aneurysm growth and risk of rupture. However, the adoption of CFD tools in clinical settings is currently limited by the high computational cost and the engineering expertise required for employing these tools, e.g., for mesh generation, appropriate choice of spatial and temporal resolution, and of boundary conditions. Herein, we address these challenges by introducing a practical and robust methodology, focusing on computational performance and minimizing user interaction through automated parameter selection. We propose a fully automated pipeline that covers the steps from a patient-specific anatomical model to results, based on a fast, graphics processing unit- (GPU-) accelerated CFD solver and a parameter selection methodology. We use a reduced order model to compute the initial estimates of the spatial and temporal resolutions and an iterative approach that further adjusts the resolution during the simulation without user interaction. The pipeline and the solver are validated based on previously published results, and by comparing the results obtained for 20 cerebral aneurysm cases with those generated by a state-of-the-art commercial solver (Ansys CFX, Canonsburg PA). The automatically selected spatial and temporal resolutions lead to results which closely agree with the state-of-the-art, with an average relative difference of only 2%. Due to the GPU-based parallelization, simulations are computationally efficient, with a median computation time of 40 minutes per simulation
    corecore