13 research outputs found

    Nanoparticle delivery systems in the treatment of diabetes complications

    Get PDF
    Diabetes mellitus, an incurable metabolic disease, is characterized by changes in the homeostasis of blood sugar levels, being the subcutaneous injection of insulin the first line treatment. This administration route is however associated with limited patients compliance, due to the risk of pain, discomfort and local infection. Nanoparticles have been proposed as insulin carriers to make possible the administration of the peptide via friendlier pathways without the need of injection, i.e., via oral or nasal routes. Nanoparticles stand for particles in the nanometer range that can be obtained from different materials (e.g., polysaccharides, synthetic polymers, lipid) and are commonly used with the aim to improve the physicochemical stability of the loaded drug and thereby its bioavailability. This review discusses the use of different types of nanoparticles (e.g., polymeric and lipid nanoparticles, liposomes, dendrimers, niosomes, micelles, nanoemulsions and also drug nanosuspensions) for improved delivery of different oral hypoglycemic agents in comparison to conventional therapies.The authors acknowledge the financial support received from Portuguese Science and Technology Foundation (FCT/MCT) and from European Funds (PRODER/COMPETE) under the project reference M-ERA-NET/0004/2015-PAIRED, co-financed by FEDER, under the Partnership Agreement PT2020. The authors also acknowledge the support of the research project: “Nutraceutica come supporto nutrizionale nel paziente oncologico”, CUP: B83D18000140007.info:eu-repo/semantics/publishedVersio

    Enhanced Herbicidal Action of Clopyralid in the Form of a Supramolecular Complex with a Gemini Surfactant

    No full text
    Surfactants are often added to herbicidal formulations to improve the delivery of the herbicide into plants. In this study a new herbicidal formulation was formed based on the clopyralid with 0.01% gemini surfactant hexanediyl-1,6-bis(dimethylcetylammonium bromide) (16-6-16) as an adjuvant. The increase in the efficiency of the formulation was associated with the formation of a supramolecular surfactant–herbicide complex (SMC), which has improved wetting properties, provides high clopyralid concentration on the leaf surface, and has higher penetrating ability compared to surfactant-free clopyralid solutions. Comparison of the herbicidal action of clopyralid–16-6-16 SMC with two commercial formulations of the same concentration of clopyralid was performed using digital phenotyping of the model weed plant cocklebur (Xanthium strumarium). Based on the spectral indices NDVI (normalized differential vegetation index) and PSRI (plant senescence reflectance index) and key morphological indexes of the leaf angle, plant height, and leaf area, we showed that clopyralid formulations strongly affected the plants and that the strongest and most durable effect was exerted by the clopyralid–16-6-16 SMC formulation

    Oxime Therapy for Brain AChE Reactivation and Neuroprotection after Organophosphate Poisoning

    No full text
    One of the main problems in the treatment of poisoning with organophosphorus (OPs) inhibitors of acetylcholinesterase (AChE) is low ability of existing reactivators of AChE that are used as antidotes to cross the blood-brain barrier (BBB). In this work, modified cationic liposomes were developed that can penetrate through the BBB and deliver the reactivator of AChE pralidoxime chloride (2-PAM) into the brain. Liposomes were obtained on the basis of phosphatidylcholine and imidazolium surfactants. To obtain the composition optimized in terms of charge, stability, and toxicity, the molar ratio of surfactant/lipid was varied. For the systems, physicochemical parameters, release profiles of the substrates (rhodamine B, 2-PAM), hemolytic activity and ability to cause hemagglutination were evaluated. Screening of liposome penetration through the BBB, analysis of 2-PAM pharmacokinetics, and in vivo AChE reactivation showed that modified liposomes readily pass into the brain and reactivate brain AChE in rats poisoned with paraoxon (POX) by 25%. For the first time, an assessment was made of the ability of imidazolium liposomes loaded with 2-PAM to reduce the death of neurons in the brains of mice. It was shown that intravenous administration of liposomal 2-PAM can significantly reduce POX-induced neuronal death in the hippocampus
    corecore