17 research outputs found

    Radiobiological studies on the 62 MeV therapeutic proton beam at lns catania: II. facs analyses of HTB140 melanoma cells

    Get PDF
    The objective of this study was to determine whether apoptosis and cell cycle redistribution were influenced by high-LET irradiation. Exponentially growing HTB140 cells were exposed to an unmodulated 62 MeV proton beam, within the Bragg peak, delivered over the single dose range from 8 Gy to 24 Gy. At 6 h post-irradiation, there was a low level of early apoptosis. At 48 h irradiated cells were more damaged, showing the increase in number of apoptotic nuclei. The dose dependent cell cycle phase distribution was detected at 48 h post-irradiation. The cell population exhibited phase redistribution toward G2/M phase.Physical chemistry 2004 : 7th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 21-23 September 200

    Radiobiological studies on the 62 MeV therapeutic proton beam at lns catania: I. survival of HTB140 melanoma cells

    Get PDF
    The aim of this study was to determine the initial inactivation of cells induced by high-energy proton beam designed for the treatment of eye melanoma. Exponentially growing HTB140 cells were exposed to an unmodulated 62 MeV proton beam delivered over the single dose range from 8 Gy to 24 Gy. Position of samples was in the zone of the Bragg peak, having high LET values. Surviving fractions were evaluated at 6, 24 and 48 h post-irradiation. The survival curves exhibited a well-known shoulder, decreasing for doses higher than 8 Gy. Therefore, a significant dose dependent early cell inactivation after single delivery of 16 Gy to 24 Gy to the cell monolayer was observed. With the increase of the post-irradiation incubation time, a better killing effect, as the consequence of clonogenic survival, was detected.Physical chemistry 2004 : 7th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 21-23 September 200

    Clinical and Research Activities at the CATANA Facility of INFN-LNS: From the Conventional Hadrontherapy to the Laser-Driven Approach

    Get PDF
    The CATANA proton therapy center was the first Italian clinical facility making use of energetic (62 MeV) proton beams for the radioactive treatment of solid tumors. Since the date of the first patient treatment in 2002, 294 patients have been successful treated whose majority was affected by choroidal and iris melanomas. In this paper, we report on the current clinical and physical status of the CATANA facility describing the last dosimetric studies and reporting on the last patient follow-up results. The last part of the paper is dedicated to the description of the INFN-LNS ongoing activities on the realization of a beamline for the transport of laser-accelerated ion beams for future applications. The ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) project is introduced and the main scientific aspects will be described

    Assessment of the inhibitory effects of different radiation qualities or chemotherapeutic agents on a human melanoma cell line

    No full text
    The correlation between time dependent viabilities, after applying two radiation qualities and two alkylating agents on HTB140 melanoma cells, has been studied. Irradiations were performed with gamma-rays and 62 MeV protons, close to the Bragg peak maximum, delivering doses of 8-24 Gy. Treatments with fotemustine (FM) and dacarbazine (DTIC) were carried out with concentrations of 0.05-2 mM. High radio-resistance of HTB140 cells revealed by a clonogenic assay was confirmed by microtetrasolium and sulforhodamine B, through the surviving fraction at 2 Gy (SF2), being 0.961-0.956 for gamma-rays and 0.931-0.887 for protons. A better efficiency of protons was illustrated by relative biological effectiveness at 2 Gy (RBE), ranging from 1.69 to 1.89. A kinetic study of concentration dependent cytotoxicity indicated that the best effect of the drugs, estimated as the concentration that produces 50% of growth inhibition (IC(50)), was obtained at 48 h, having values of 76 mu M for DTIC and 145 mu M for FM. The cytostatic ability of the drugs pointed out that the presence of DTIC at 24 h, compared to FM, was insufficient to produce an effect. Protons and FM demonstrated their pro apoptotic capacity. Cross-resistance between treatments applied to the HTB140 cells was observed, protons being the most efficient, while DTIC, FM and gamma-rays demonstrated a lower level of cell inactivation. (C) 2008 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. ALL rights reserved

    Viability of a human melanoma cell after single and combined treatment with fotemustine, dacarbazine, and proton irradiation

    No full text
    Viability of human HTB140 melanoma cells after being exposed to fotemustine (FM) and dacarbazine (DTIC) as well as to proton irradiation was studied. Effects of 100 and 250 mu M drugs were assessed after incubation of 6, 24, 48, 72, and 96 h. Irradiations were performed with 62 MeV therapeutic protons, delivering to the cell monolayer single doses of 2, 4, 8, 12, and 16 Gy. Viability was evaluated 7 days after irradiation. Inactivation level was estimated using microtetrasolium (MTT) and sulforhodamine B (SRB) assays. Combined effects of each drug and protons, were carried out using the same drug concentrations. Proton doses applied were those used in therapy, that is, 12 and 16 Gy. With the increase of drug concentration or irradiation dose, level of cell inactivation reached approximately 60%, 48 h after drug treatment or 7 days after irradiation at 16 Gy. Considering the rate of drug concentrations used, as well as the level of doses applied, it appears that HTB140 cells are more resistant to proton irradiation than to alkylating agents tested. The combined treatment with FM or DTIC and protons did not show significant changes of cell viability as compared to the effects of single agents. Since the time point for measuring cumulative effects of drug and irradiation was 48 h post irradiation, it seems that the obtained level of viability could be attributed primarily to the effects of drugs.Cell Signaling World 2006 Conference, Jan 25-28, 2006, Luxembourg, Luxembour

    Anti-Tumour Activity of Fotemustine and Protons in Combination with Bevacizumab

    No full text
    Background: Metastatic melanoma is one of the most aggressive tumours and is also very resistant to current therapeutic approaches. The aim of this investigation was the in vitro study of the anti-proliferative effects of fotemustine (FM; 100 and 250 mu M), bevacizumab (5 mu g/ml) and proton irradiation (12 and 16 Gy) on resistant HTB140 human melanoma cells. Methods: Viability was estimated by sulphorhodamine B assay, while cell proliferation was analyzed by 5-bromo-2-deoxyuridine assay. Cell cycle distribution and apoptosis were examined using flow cytometry. Results: Cell viability and proliferation were reduced after all applied treatments. The level of apoptosis significantly increased after treatment with FM, protons or a combination of all agents, while the apoptotic index ranged from 1.2 to 9.2. Proton irradiation, as well as combined treatment with bevacizumab and protons or 100 mu M FM, bevacizumab and protons, have reduced melanoma cell proliferation through the induction of G1 phase arrest. Single FM (250 mu M) or bevacizumab treatment and their combination, as well as the joint application of these 2 agents with protons, reduced cell proliferation and provoked G2 phase accumulation. Conclusion: The analyzed treatments reduced cell viability and proliferation, triggered G1 or G2 cell cycle phase accumulation and stimulated apoptotic cell death. Copyright (C) 2010 S. Karger AG, Base

    Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak

    No full text
    Purpose: To analyse changes of cell inactivation and proliferation under therapeutic irradiation conditions along the proton spread out Bragg peak (SOBP) with particular emphasis on its distal declining edge. Materials and methods: HTB140 cells were irradiated at four positions: plateau, middle, distal end and distal declining edge of the 62 MeV proton SOBP. Doses ranged from 2-16 Gy. They were normalised in the middle of SOBP and delivered following the axial physical dose profile. Survival, proliferation and cell cycle were assessed seven days after irradiation. Results: Moving from proximal to distal irradiation position surviving fractions at 2 Gy (SF2) decreased from 0.88-0.59. Increased radiosensitivity of the cells was noticed for the doses below 4 Gy, resulting in two gradients of cell inactivation, stronger for lower and weaker for higher doses. Relative biological effectiveness (RBE) increased from 1.68-2.84 at the distal end of SOBP. A further rise of RBE reaching 7.14 was at its distal declining edge. Following the axial physical dose profile of SOBP the strongest inactivation was attained at its distal end and was comparable to that at its declining edge. Conclusions: Survival data confirmed very high radioresistance of HTB140 cells. An effect similar to low-dose hyper radiosensitivity (HRS) was observed for order of magnitude larger doses. Better response of cells to protons than to gamma-rays was illustrated by rather high RBE. Strong killing ability at the SOBP distal declining edge was the consequence of increasing proton linear energy transfer
    corecore