89 research outputs found

    SAPWIN-a symbolic simulator as a support in electrical engineering education

    Get PDF

    A MLMVN WITH ARBITRARY COMPLEX-VALUED INPUTS AND A HYBRID TESTABILITY APPROACH FOR THE EXTRACTION OF LUMPED MODELS USING FRA

    Get PDF
    A procedure for the identification of lumped models of distributed parameter electromagnetic systems is presented in this paper. A Frequency Response Analysis (FRA) of the device to be modeled is performed, executing repeated measurements or intensive simulations. The method can be used to extract the values of the components. The fundamental brick of this architecture is a multi-valued neuron (MVN), used in a multilayer neural network (MLMVN); the neuron is modified in order to use arbitrary complex-valued inputs, which represent the frequency response of the device. It is shown that this modification requires just a slight change in the MLMVN learning algorithm. The method is tested over three completely different examples to clearly explain its generality

    Elettrotecnica

    Get PDF

    Appliance Recognition in an OSGi-based Home Energy Management Gateway

    Get PDF
    The rational use and management of energy is considered a key societal and technological challenge. Home energy management systems (HEMS) have been introduced especially in private home domains to support users in managing and controlling energy consuming devices. Recent studies have shown that informing users about their habits with appliances as well as their usage pattern can help to achieve energy reduction in private households. This requires instruments able to monitor energy consumption at fine grain level and provide this information to consumers. While the most existing approaches for load disaggregation and classification require high-frequency monitoring data, in this paper we propose an approach that exploits low-frequency monitoring data gathered by meters (i.e., Smart Plugs) displaced in the home. Moreover, while the most existing works dealing with appliance classification delegate the classification task to a remote central server, we propose a distributed approach where data processing and appliance recognition are performed locally in the Home Gateway. Our approach is based on a distributed load monitoring system made of Smart Plugs attached to devices and connected to a Home Gateway via the ZigBee protocol. The Home Gateway is based on the OSGi platform, collects data from home devices, and hosts both data processing and user interaction logic

    A Comparison of Power Quality Disturbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM

    Get PDF
    The use of electronic loads has improved many aspects of everyday life, permitting more efficient, precise and automated process. As a drawback, the nonlinear behavior of these systems entails the injection of electrical disturbances on the power grid that can cause distortion of voltage and current. In order to adopt countermeasures, it is important to detect and classify these disturbances. To do this, several Machine Learning Algorithms are currently exploited. Among them, for the present work, the Long Short Term Memory (LSTM), the Convolutional Neural Networks (CNN), the Convolutional Neural Networks Long Short Term Memory (CNN-LSTM) and the CNN-LSTM with adjusted hyperparameters are compared. As a preliminary stage of the research, the voltage and current time signals are simulated using MATLAB Simulink. Thanks to the simulation results, it is possible to acquire a current and voltage dataset with which the identification algorithms are trained, validated and tested. These datasets include simulations of several disturbances such as Sag, Swell, Harmonics, Transient, Notch and Interruption. Data Augmentation techniques are used in order to increase the variability of the training and validation dataset in order to obtain a generalized result. After that, the networks are fed with an experimental dataset of voltage and current field measurements containing the disturbances mentioned above. The networks have been compared, resulting in a 79.14% correct classification rate with the LSTM network versus a 84.58% for the CNN, 84.76% for the CNN-LSTM and a 83.66% for the CNN-LSTM with adjusted hyperparameters. All of these networks are tested using real measurements
    corecore