181 research outputs found
Generating Long-term Trajectories Using Deep Hierarchical Networks
We study the problem of modeling spatiotemporal trajectories over long time
horizons using expert demonstrations. For instance, in sports, agents often
choose action sequences with long-term goals in mind, such as achieving a
certain strategic position. Conventional policy learning approaches, such as
those based on Markov decision processes, generally fail at learning cohesive
long-term behavior in such high-dimensional state spaces, and are only
effective when myopic modeling lead to the desired behavior. The key difficulty
is that conventional approaches are "shallow" models that only learn a single
state-action policy. We instead propose a hierarchical policy class that
automatically reasons about both long-term and short-term goals, which we
instantiate as a hierarchical neural network. We showcase our approach in a
case study on learning to imitate demonstrated basketball trajectories, and
show that it generates significantly more realistic trajectories compared to
non-hierarchical baselines as judged by professional sports analysts.Comment: Published in NIPS 201
Coordinated Multi-Agent Imitation Learning
We study the problem of imitation learning from demonstrations of multiple
coordinating agents. One key challenge in this setting is that learning a good
model of coordination can be difficult, since coordination is often implicit in
the demonstrations and must be inferred as a latent variable. We propose a
joint approach that simultaneously learns a latent coordination model along
with the individual policies. In particular, our method integrates unsupervised
structure learning with conventional imitation learning. We illustrate the
power of our approach on a difficult problem of learning multiple policies for
fine-grained behavior modeling in team sports, where different players occupy
different roles in the coordinated team strategy. We show that having a
coordination model to infer the roles of players yields substantially improved
imitation loss compared to conventional baselines.Comment: International Conference on Machine Learning 201
Generative Multi-Agent Behavioral Cloning
We propose and study the problem of generative multi-agent behavioral cloning, where the goal is to learn a generative, i.e., non-deterministic, multi-agent policy from pre-collected demonstration data. Building upon advances in deep generative models, we present a hierarchical policy framework that can tractably learn complex mappings from input states to distributions over multi-agent action spaces by introducing a hierarchy with macro-intent variables that encode long-term intent. In addition to synthetic settings, we show how to instantiate our framework to effectively model complex interactions between basketball players and generate realistic multi-agent trajectories of basketball gameplay over long time periods. We validate our approach using both quantitative and qualitative evaluations, including a user study comparison conducted with professional sports analysts
- …