1,657 research outputs found
KAT-7 Science Verification: Using HI Observations of NGC 3109 to Understand its Kinematics and Mass Distribution
HI observations of the Magellanic-type spiral NGC 3109, obtained with the
seven dish Karoo Array Telescope (KAT-7), are used to analyze its mass
distribution. Our results are compared to what is obtained using VLA data.
KAT-7 is the precursor of the SKA pathfinder MeerKAT, which is under
construction. The short baselines and low system temperature of the telescope
make it sensitive to large scale low surface brightness emission. The new
observations with KAT-7 allow the measurement of the rotation curve of NGC 3109
out to 32', doubling the angular extent of existing measurements. A total HI
mass of 4.6 x 10^8 Msol is derived, 40% more than what was detected by the VLA
observations.
The observationally motivated pseudo-isothermal dark matter (DM) halo model
can reproduce very well the observed rotation curve but the cosmologically
motivated NFW DM model gives a much poorer fit to the data. While having a more
accurate gas distribution has reduced the discrepancy between the observed RC
and the MOdified Newtonian Dynamics (MOND) models, this is done at the expense
of having to use unrealistic mass-to-light ratios for the stellar disk and/or
very large values for the MOND universal constant a0. Different distances or HI
contents cannot reconcile MOND with the observed kinematics, in view of the
small errors on those two quantities. As for many slowly rotating gas-rich
galaxies studied recently, the present result for NGC 3109 continues to pose a
serious challenge to the MOND theory.Comment: 25 pages, 20 figures, accepted for publication in Astronomical
Journa
Improving the Coherence Time of Superconducting Coplanar Resonators
The quality factor and energy decay time of superconducting resonators have
been measured as a function of material, geometry, and magnetic field. Once the
dissipation of trapped magnetic vortices is minimized, we identify surface
two-level states (TLS) as an important decay mechanism. A wide gap between the
center conductor and the ground plane, as well as use of the superconductor Re
instead of Al, are shown to decrease loss. We also demonstrate that classical
measurements of resonator quality factor at low excitation power are consistent
with single-photon decay time measured using qubit-resonator swap experiments.Comment: 3 pages, 4 figures for the main paper; total 5 pages, 6 figures
including supplementary material. Submitted to Applied Physics Letter
HI observations of the nearest starburst galaxy NGC 253 with the SKA precursor KAT-7
We present HI observations of the Sculptor Group starburst spiral galaxy NGC
253, obtained with the Karoo Array Telescope (KAT-7). KAT-7 is a pathfinder for
the SKA precursor MeerKAT, under construction. The short baselines and low
system temperature of the telescope make it very sensitive to large scale, low
surface brightness emission. The KAT-7 observations detected 33% more flux than
previous VLA observations, mainly in the outer parts and in the halo for a
total HI mass of M. HI can be found at
large distances perpendicular to the plane out to projected distances of ~9-10
kpc away from the nucleus and ~13-14 kpc at the edge of the disk. A novel
technique, based on interactive profile fitting, was used to separate the main
disk gas from the anomalous (halo) gas. The rotation curve (RC) derived for the
HI disk confirms that it is declining in the outer parts, as seen in previous
optical Fabry-Perot measurements. As for the anomalous component, its RC has a
very shallow gradient in the inner parts and turns over at the same radius as
the disk, kinematically lagging by ~100 km/sec. The kinematics of the observed
extra planar gas is compatible with an outflow due to the central starburst and
galactic fountains in the outer parts. However, the gas kinematics shows no
evidence for inflow. Analysis of the near-IR WISE data, shows clearly that the
star formation rate (SFR) is compatible with the starburst nature of NGC 253.Comment: 18 pages, 20 figures, 8 Tables. Accepted for publication to MNRA
Computing prime factors with a Josephson phase qubit quantum processor
A quantum processor (QuP) can be used to exploit quantum mechanics to find
the prime factors of composite numbers[1]. Compiled versions of Shor's
algorithm have been demonstrated on ensemble quantum systems[2] and photonic
systems[3-5], however this has yet to be shown using solid state quantum bits
(qubits). Two advantages of superconducting qubit architectures are the use of
conventional microfabrication techniques, which allow straightforward scaling
to large numbers of qubits, and a toolkit of circuit elements that can be used
to engineer a variety of qubit types and interactions[6, 7]. Using a number of
recent qubit control and hardware advances [7-13], here we demonstrate a
nine-quantum-element solid-state QuP and show three experiments to highlight
its capabilities. We begin by characterizing the device with spectroscopy.
Next, we produces coherent interactions between five qubits and verify bi- and
tripartite entanglement via quantum state tomography (QST) [8, 12, 14, 15]. In
the final experiment, we run a three-qubit compiled version of Shor's algorithm
to factor the number 15, and successfully find the prime factors 48% of the
time. Improvements in the superconducting qubit coherence times and more
complex circuits should provide the resources necessary to factor larger
composite numbers and run more intricate quantum algorithms.Comment: 5 pages, 3 figure
Microwave Dielectric Loss at Single Photon Energies and milliKelvin Temperatures
The microwave performance of amorphous dielectric materials at very low
temperatures and very low excitation strengths displays significant excess
loss. Here, we present the loss tangents of some common amorphous and
crystalline dielectrics, measured at low temperatures (T < 100 mK) with near
single-photon excitation energies, using both coplanar waveguide (CPW) and
lumped LC resonators. The loss can be understood using a two-level state (TLS)
defect model. A circuit analysis of the half-wavelength resonators we used is
outlined, and the energy dissipation of such a resonator on a multilayered
dielectric substrate is considered theoretically.Comment: 4 pages, 3 figures, submitted to Applied Physics Letter
Energy decay and frequency shift of a superconducting qubit from non-equilibrium quasiparticles
Quasiparticles are an important decoherence mechanism in superconducting
qubits, and can be described with a complex admittance that is a generalization
of the Mattis-Bardeen theory. By injecting non-equilibrium quasiparticles with
a tunnel junction, we verify qualitatively the expected change of the decay
rate and frequency in a phase qubit. With their relative change in agreement to
within 4% of prediction, the theory can be reliably used to infer quasiparticle
density. We describe how settling of the decay rate may allow determination of
whether qubit energy relaxation is limited by non-equilibrium quasiparticles.Comment: Main paper: 4 pages, 3 figures, 1 table. Supplementary material: 8
pages, 3 figure
Deterministic entanglement of photons in two superconducting microwave resonators
Quantum entanglement, one of the defining features of quantum mechanics, has
been demonstrated in a variety of nonlinear spin-like systems. Quantum
entanglement in linear systems has proven significantly more challenging, as
the intrinsic energy level degeneracy associated with linearity makes quantum
control more difficult. Here we demonstrate the quantum entanglement of photon
states in two independent linear microwave resonators, creating N-photon NOON
states as a benchmark demonstration. We use a superconducting quantum circuit
that includes Josephson qubits to control and measure the two resonators, and
we completely characterize the entangled states with bipartite Wigner
tomography. These results demonstrate a significant advance in the quantum
control of linear resonators in superconducting circuits.Comment: 11 pages, 11 figures, and 3 tables including supplementary materia
- …