1,658 research outputs found

    Community Redevelopment, Public Use, and Eminent Domain

    Get PDF
    Published just weeks before the U.S. Supreme Court handed down their controversial decision on Kelo v. City of New London in 2005, this article, in correctly predicting the outcome of the Supreme Court opinion, explores in Section I how the concept of what constitutes a public use has evolved over the decades from traditionally accepted uses such as public roads, buildings (e.g., government buildings and schools), and utilities to urban redevelopment. It explains how the broad concepts of community redevelopment have been stretched to encompass needed economic development projects that promise jobs, tax revenue, and other public benefits similar to those currently being debated before the courts of our country. Section II begins by briefly examining the development of the public use clause with respect to eminent domain. Section III discusses a recent policy guide adopted by the American Planning Association (APA) on community redevelopment. Section IV then examines three significant cases from 2004 that crystallized around the question of what constitutes a valid public purpose under eminent domain when the government\u27s motivation is to promote economic development in the municipality. Section V concludes that the U.S. Supreme Court should confirm that economic development is a valid public use for the purpose of eminent domain, and that the public-private partnerships that have evolved to assist governments in meeting redevelopment needs are a necessary and appropriate strategy fostering a valid public use

    Thin film dielectric microstrip kinetic inductance detectors

    Get PDF
    Microwave Kinetic Inductance Detectors, or MKIDs, are a type of low temperature detector that exhibit intrinsic frequency domain multiplexing at microwave frequencies. We present the first theory and measurements on a MKID based on a microstrip transmission line resonator. A complete characterization of the dielectric loss and noise properties of these resonators is performed, and agrees well with the derived theory. A competitive noise equivalent power of 5×10−17\times10^{-17} W Hz−1/2^{-1/2} at 1 Hz has been demonstrated. The resonators exhibit the highest quality factors known in a microstrip resonator with a deposited thin film dielectric.Comment: 10 pages, 4 figures, APL accepte

    Nonequilibrium Energy Transduction in Stochastic Strongly Coupled Rotary Motors

    Full text link
    Living systems at the molecular scale are composed of many constituents with strong and heterogeneous interactions, operating far from equilibrium, and subject to strong fluctuations. These conditions pose significant challenges to efficient, precise, and rapid free energy transduction, yet nature has evolved numerous molecular machines that do just this. Using a simple model of the ingenious rotary machine FoF1-ATP synthase, we investigate the interplay between nonequilibrium driving forces, thermal fluctuations, and interactions between strongly coupled subsystems. This model reveals design principles for effective free energy transduction. Most notably, while tight coupling is intuitively appealing, we find that output power is maximized at intermediate-strength coupling, which permits lubrication by stochastic fluctuations with only minimal slippage.Comment: 17 pages, 12 figures. J. Phys. Chem. Lett., 202

    HI observations of the nearest starburst galaxy NGC 253 with the SKA precursor KAT-7

    Get PDF
    We present HI observations of the Sculptor Group starburst spiral galaxy NGC 253, obtained with the Karoo Array Telescope (KAT-7). KAT-7 is a pathfinder for the SKA precursor MeerKAT, under construction. The short baselines and low system temperature of the telescope make it very sensitive to large scale, low surface brightness emission. The KAT-7 observations detected 33% more flux than previous VLA observations, mainly in the outer parts and in the halo for a total HI mass of 2.1±0.12.1 \pm 0.1 ×109\times 10^{9} M⊙_{\odot}. HI can be found at large distances perpendicular to the plane out to projected distances of ~9-10 kpc away from the nucleus and ~13-14 kpc at the edge of the disk. A novel technique, based on interactive profile fitting, was used to separate the main disk gas from the anomalous (halo) gas. The rotation curve (RC) derived for the HI disk confirms that it is declining in the outer parts, as seen in previous optical Fabry-Perot measurements. As for the anomalous component, its RC has a very shallow gradient in the inner parts and turns over at the same radius as the disk, kinematically lagging by ~100 km/sec. The kinematics of the observed extra planar gas is compatible with an outflow due to the central starburst and galactic fountains in the outer parts. However, the gas kinematics shows no evidence for inflow. Analysis of the near-IR WISE data, shows clearly that the star formation rate (SFR) is compatible with the starburst nature of NGC 253.Comment: 18 pages, 20 figures, 8 Tables. Accepted for publication to MNRA

    Computing prime factors with a Josephson phase qubit quantum processor

    Full text link
    A quantum processor (QuP) can be used to exploit quantum mechanics to find the prime factors of composite numbers[1]. Compiled versions of Shor's algorithm have been demonstrated on ensemble quantum systems[2] and photonic systems[3-5], however this has yet to be shown using solid state quantum bits (qubits). Two advantages of superconducting qubit architectures are the use of conventional microfabrication techniques, which allow straightforward scaling to large numbers of qubits, and a toolkit of circuit elements that can be used to engineer a variety of qubit types and interactions[6, 7]. Using a number of recent qubit control and hardware advances [7-13], here we demonstrate a nine-quantum-element solid-state QuP and show three experiments to highlight its capabilities. We begin by characterizing the device with spectroscopy. Next, we produces coherent interactions between five qubits and verify bi- and tripartite entanglement via quantum state tomography (QST) [8, 12, 14, 15]. In the final experiment, we run a three-qubit compiled version of Shor's algorithm to factor the number 15, and successfully find the prime factors 48% of the time. Improvements in the superconducting qubit coherence times and more complex circuits should provide the resources necessary to factor larger composite numbers and run more intricate quantum algorithms.Comment: 5 pages, 3 figure

    State tomography of capacitively shunted phase qubits with high fidelity

    Full text link
    We introduce a new design concept for superconducting quantum bits (qubits) in which we explicitly separate the capacitive element from the Josephson tunnel junction for improved qubit performance. The number of two-level systems (TLS) that couple to the qubit is thereby reduced by an order of magnitude and the measurement fidelity improves to 90%. This improved design enables the first demonstration of quantum state tomography with superconducting qubits using single shot measurements.Comment: submitted to PR
    • …
    corecore