240 research outputs found

    Ultra High Energy Neutrino-Relic Neutrino Interactions In Dark Halos to Solve Infrared-Tev And GZK Cut-Off

    Get PDF
    Ultra High Energy Neutrino scattering on Relic Light Neutrinos in Dark Galactic or Local Group lead to Z and WW,ZZ showering: the nucleon component of the shower may overcome the GZK cut-off while the electro-magnetic tail at TeVs up to EeVs energy may solve the Infrared-TeV cut-off in a natural way. Different Gamma TeV puzzles may find a solution within this scenario: new predictions on UHECR spectra in future data are derived.Comment: 4 pages, 3 figures, 2 tables ICRC 2001 HE 3.6 Dark Matter - German

    Upward Tau Air Showers from Earth

    Full text link
    We estimate the rate of observable Horizontal and Upward Tau Air-Showers (HORTAUs, UPTAUS) considering both the Earth opacity and the finite size of the terrestrial atmosphere. We calculate the effective target volumes and masses for Tau air-showers emerging from the Earth. The resulting model-independent masses for satellite experiments such as EUSO may encompass at E_nu_tau = 10^19 eV a very large volume, V= 1020 km^3. Adopting simple power law neutrino fluxes, E^-2 and E^-1, calibrated to GZK-like and Z-Burst-like models, we estimate that at E= 10^19 eV nearly half a dozen horizontal shower events should be detected by EUSO in three years of data collection by the "guaranteed" GZK neutrino flux. We also find that the equivalent mass for an Earth outer layer made of rock is dominant compared to the water, contrary to simplified all-rock/all-water Earth models and previous Montecarlo simulations. Therefore we expect an enhancement of neutrino detection along continental shelves nearby the highest mountain chains, also given the better geometrical acceptance for Earth skimming neutrinos. The Auger experiment might reveal such a signature at E_nu= 10^{18} eV (with 26 events in 3 yr) towards the Andes, if the angular resolution at the horizon (both in azimuth and zenith) would reach an accuracy of nearly one degree needed to disentangle tau air showers from common UHECR. The number of events increases at lower energies; therefore we suggest an extension of the EUSO and Auger sensitivity down to (or even below) E_nu = 10^19 eV and E_nu = 10^18 eV respectively.Comment: New version resubmitted to ApJ on the 6th April 2004; 55 Pages,20 figures, major changes following referee reques

    Shadows of Relic Neutrino Masses and Spectra on Highest Energy GZK Cosmic Rays

    Full text link
    The Ultra High Energy (UHE) neutrino scattering onto relic cosmic neutrinos in galactic and local halos offers an unique way to overcome GZK cut-off. The UHE nu secondary of UHE photo-pion decays may escape the GZK cut-off and travel on cosmic distances hitting local light relic neutrinos clustered in dark halos. The Z resonant production and the competitive W^+W^-, ZZ pair production define a characteristic imprint on hadronic consequent UHECR spectra. This imprint keeps memory both of the primary UHE nu spectra as well as of the possible relic neutrino masses values, energy spectra and relic densities. Such an hadronic showering imprint should reflect into spectra morphology of cosmic rays near and above GZK 10^{19}-10^{21}eV cut-off energies. A possible neutrino degenerate masses at eVs or a more complex and significant neutrino mass split below or near Super-Kamiokande \triangle m_{\nu_{SK}}= 0.1 eV masses might be reflected after each corresponding Z peak showering, into new twin unexpected UHECR flux modulation behind GZK energies: E_{p} sim 3(frac{triangle m_{\nu_{SK}}}/m_{\nu}10^{21}),eV. Other shadowsof lightest, nearly massless, neutrinos m_{nu_{2K} simeq 0.001eV simeq kT_{\nu}, their lowest relic temperatures, energies and densities might be also reflected at even higher energies edges near Grand Unification: E_{p} \sim 2.2(m_{\nu_{2K}/E_{\nu}})10^{23}, eV .Comment: 14 pages, 6 Figures,Invited Talk Heidelberg DARK 200

    Muon and Gamma Bundles tracing Up-going Tau Neutrino Astronomy

    Full text link
    Up-going and Horizontal Tau Air-Showers, UpTaus and HorTaus, may trace Ultra High Energy Neutrino Tau Earth Skimming at the edge of the horizons. Their secondaries muon, electron pairs, and gamma bundles flashes might trace their nature over UHECR secondaries in horizontal showers. Indeed the atmosphere act as a perfect amplifier as well as a filter for showers: down-ward and horizontal muon bundles may still be originated by far Ultra High Energy Cosmic Rays skimming the terrestrial atmosphere but their rich gamma component will be exponentially suppressed. At large zenith angles after crossing a large slant depth X > 3 10^3 g cm^-2 the number of muons and secondary gamma (produced by the electron pair from muon decay in flight) is comparable. On the other hand, up-ward muon bundles from UpTaus and HorTaus may arise within a young shower with a larger gamma-muon ratio 10^2, leaving a characteristic imprint. We estimate the UpTaus and HorTaus rate from the Earth and we evaluate the consequent event rate of muons, electrons pairs andgamma bundles. We show that such events even for minimal GZK neutrino fluxes could be detected by scintillator arrays placed on mountains at 1-5km and pointing to the horizon. The required arrayareas are within tens-hundreds of square meters. The ideal structure is an array of crown-like twin detectors facing the horizons. We argue that such detectors will be able to detect both muonic bundles at a minimal average flux of 10^-11 cm-2 s^-1 sr^-1 and electromagnetic particles gamma and electron pairs 3 10^-9 cm^-2 s^-1 sr^-1, a few times each year for GZK neutrino fluxes.Comment: 10 pages, 11 figures and 1 tab., Catania GZK meeting, to be published in Nuclear Phys

    Sensor-embedded face masks for detection of volatiles in breath: a proof of concept study

    Get PDF
    The correlation between breath volatilome and health is prompting a growing interest in the development of sensors optimized for breath analysis. On the other hand, the outbreak of COVID-19 evidenced that breath is a vehicle of infection; thus, the introduction of low-cost and disposable devices is becoming urgent for a clinical implementation of breath analysis. In this paper, a proof of concept about the functionalization of face masks is provided. Porphyrin-based sensors are among the most performant devices for breath analysis, but since porphyrins are scarcely conductive, they make use of costly and bulky mass or optical transducers. To overcome this drawback, we introduce here a hybrid material made of conducting polymer and porphyrins. The resulting material can be easily deposited on the internal surface of standard FFP face masks producing resistive sensors that retain the chemical sensitivity of porphyrins implementing their combinatorial selectivity for the identification of volatile compounds and the classification of complex samples. The sensitivity of sensors has been tested with respect to a set of seven volatile compounds representative of diverse chemical families. Sensors react to all compounds but with a different sensitivity pattern. Functionalized face masks have been tested in a proof-of-concept test aimed at identifying changes of breath due to the ingestion of beverages (coffee and wine) and solid food (banana- and mint-flavored candies). Results indicate that sensors can detect volatile compounds against the background of normal breath VOCs, suggesting the possibility to embed sensors in face masks for extensive breath analysis

    Splitting neutrino masses and showering into Sky

    Get PDF
    Neutrino masses might be as light as a few time the atmospheric neutrino mass splitting. High Energy ZeV cosmic neutrinos (in Z-Showering model) might hit relic ones at each mass in different resonance energies in our nearby Universe. This non-degenerated density and energy must split UHE Z-boson secondaries (in Z-Burst model) leading to multi injection of UHECR nucleons within future extreme AUGER energy. Secondaries of Z-Burst as neutral gamma, below a few tens EeV are better surviving local GZK cut-off and they might explain recent Hires BL-Lac UHECR correlations at small angles. A different high energy resonance must lead to Glashow's anti-neutrino showers while hitting electrons in matter. In air, Glashow's anti-neutrino showers lead to collimated and directional air-showers offering a new Neutrino Astronomy. At greater energy around PeV, Tau escaping mountains and Earth and decaying in flight are effectively showering in air sky. These Horizontal showering is splitting by geomagnetic field in forked shapes. Such air-showers secondaries release amplified and beamed gamma bursts (like observed TGF), made also by muon and electron pair bundles, with their accompanying rich Cherenkov flashes. Also planet' s largest (Saturn, Jupiter) atmosphere limbs offer an ideal screen for UHE GZK and Z-burst tau neutrino, because their largest sizes. Titan thick atmosphere and small radius are optimal for discovering up-going resonant Glashow resonant showers. Earth detection of Neutrino showering by twin Magic Telescopes on top mountains, or by balloons and satellites arrays facing the limbs are the simplest and cheapest way toward UHE Neutrino Astronomy .Comment: 4 pages, 7 figures; an author's name correction and Journal Referenc
    • …
    corecore