5 research outputs found

    Human PSC-derived hepatocytes express low levels of viral pathogen recognition receptors, but are capable of mounting an effective innate immune response

    Get PDF
    Hepatocytes are key players in the innate immune response to liver pathogens but are challenging to study because of inaccessibility and a short half-life. Recent advances in in vitro differentiation of hepatocyte-like cells (HLCs) facilitated studies of hepatocyte–pathogen interactions. Here, we aimed to define the anti-viral innate immune potential of human HLCs with a focus on pattern recognition receptor (PRR)-expression and the presence of a metabolic switch. We analysed cytoplasmic PRR and endosomal toll-like receptor (TLR)-expression, as well as activity and adaptation of HLCs to an inflammatory environment. We found that transcript levels of retinoic acid inducible gene I (RIG-I), melanoma differentiation antigen 5 (MDA5), and TLR3 became downregulated during differentiation, indicating the acquisition of a more tolerogenic phenotype, as expected in healthy hepatocytes. HLCs responded to activation of RIG-I by producing interferons (IFNs) and IFN-stimulated genes. Despite low-level levels of TLR3, receptor expression was upregulated in an inflammatory environment. TLR3 signalling induced expression of proinflammatory cytokines at the gene level, indicating that several PRRs need to interact for successful innate immune activation. The inflammatory responsiveness of HLCs was accompanied by the downregulation of cytochrome P450 3A and 1A2 activity and decreased serum protein production, showing that the metabolic switch seen in primary hepatocytes during anti-viral responses is also present in HLCs

    Protocol for automated production of human stem cell derived liver spheres

    No full text
    Summary: This protocol describes how to produce human liver spheres from pluripotent stem cell-derived hepatic progenitors, endothelial cells, and hepatic stellate cells. Liver spheres form by self-assembly in microwells, generating up to 73 spheres per well of a 96-well plate. This process was automated using liquid handling and pipetting systems, permitting cost-effective scale-up and reducing sphere variability. In its current form, this system provides a powerful tool to generate human liver tissue for disease modeling and drug screening.For complete details on the use and execution of this protocol, please refer to Lucendo-Villarin et al. (2020) (https://doi.org/10.1088/1758-5090/abbdb2)

    Modelling human hepatic steatosis in pluripotent stem cell-derived hepatocytes

    Get PDF
    This protocol describes the production of hepatocyte-like cells (HLCs) from human pluripotent stem cells and how to induce hepatic steatosis, a condition characterized by intracellular lipid accumulation. Following differentiation to an HLC phenotype, intracellular lipid accumulation is induced with a steatosis induction cocktail, allowing the user to examine the cellular processes that underpin hepatic steatosis. Furthermore, the renewable nature of our system, on a defined genetic background, permits in-depth mechanistic analysis, which may facilitate therapeutic target identification in the future. For complete details on the use and execution of this protocol, please refer to Sinton et al. (2021)

    Serum Free Production of Three-Dimensional Human Hepatospheres from Pluripotent Stem Cells

    Get PDF
    The video component (running time: 06:57) of this article can be found at https://www.jove.com/video/59965/Copyright © 2019 The Author(s) Creative Commons Attribution 3.0 License. The development of renewable sources of liver tissue is required to improve cell-based modelling, and develop human tissue for transplantation. Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) represent promising sources of human liver spheres. We have developed a serum free and defined method of cellular differentiation to generate three-dimensional human liver spheres formed from human pluripotent stem cells. A potential limitation of the technology is the production of dense spheres with dead material inside. In order to circumvent this, we have employed agarose microwell technology at defined cell densities to control the size of the 3D spheres, preventing the generation of apoptotic and/or necrotic cores. Notably, the spheres generated by our approach display liver function and stable phenotype, representing a valuable resource for basic and applied scientific research. We believe that our approach could be used as a platform technology to develop further tissues to model and treat human disease and in the future may permit the generation of human tissue with complex tissue architecture.UK Regenerative Medicine Platform (MRC MR/L022974/1); Chief Scientist’s Office (TCS/16/37)
    corecore