2,048 research outputs found
Tunable diffusion of magnetic particles in a quasi-one-dimensional channel
The diffusion of a system of ferromagnetic dipoles confined in a
quasi-one-dimensional parabolic trap is studied using Brownian dynamics
simulations. We show that the dynamics of the system is tunable by an in-plane
external homogeneous magnetic field. For a strong applied magnetic field, we
find that the mobility of the system, the exponent of diffusion and the
crossover time among different diffusion regimes can be tuned by the
orientation of the magnetic field. For weak magnetic fields, the exponent of
diffusion in the subdiffusive regime is independent of the orientation of the
external field.Comment: 9 pages, 13 figures, to appear in Phys. Rev. E (2013
Anisotropy and percolation threshold in a multifractal support
Recently a multifractal object, , was proposed to study percolation
properties in a multifractal support. The area and the number of neighbors of
the blocks of show a non-trivial behavior. The value of the
probability of occupation at the percolation threshold, , is a function
of , a parameter of which is related to its anisotropy. We
investigate the relation between and the average number of neighbors of
the blocks as well as the anisotropy of
Magnetic particles confined in a modulated channel: structural transitions tunable by tilting a magnetic field
The ground state of colloidal magnetic particles in a modulated channel are
investigated as function of the tilt angle of an applied magnetic field. The
particles are confined by a parabolic potential in the transversal direction
while in the axial direction a periodic substrate potential is present. By
using Monte Carlo (MC) simulations, we construct a phase diagram for the
different crystal structures as a function of the magnetic field orientation,
strength of the modulated potential and the commensurability factor of the
system. Interestingly, we found first and second order phase transitions
between different crystal structures, which can be manipulated by the
orientation of the external magnetic field. A re-entrant behavior is found
between two- and four-chain configurations, with continuous second order
transitions. Novel configurations are found consisting of frozen in solitons.
By changing the orientation and/or strength of the magnetic field and/or the
strength and the spatial frequency of the periodic substrate potential, the
system transits through different phases.Comment: Submitted to Phys. Rev. E (10 pages, 12 figures
Molecular modeling of -endotoxins from Bacillus thuringiensis.
Bacillus thuringiensis (Bt) is a Gram-positive entomotoxic bacterium widely used to control crop pests and disease vectors. Since the introduction of transgenic plants expressing Bt genes, it has been demonstrated that Bt-crops constitute an important tool in the increase of productivity and in the decrease of the use of chemical pesticides. Its success comes from the production of the ?-endotoxins (Cry). These toxins share a molecular mechanism of similar action or, at least, some common aspects
Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel
Diffusive properties of a monodisperse system of interacting particles
confined to a \textit{quasi}-one-dimensional (Q1D) channel are studied using
molecular dynamics (MD) simulations. We calculate numerically the mean-squared
displacement (MSD) and investigate the influence of the width of the channel
(or the strength of the confinement potential) on diffusion in finite-size
channels of different shapes (i.e., straight and circular). The transition from
single-file diffusion (SFD) to the two-dimensional diffusion regime is
investigated. This transition (regarding the calculation of the scaling
exponent () of the MSD ) as a
function of the width of the channel, is shown to change depending on the
channel's confinement profile. In particular the transition can be either
smooth (i.e., for a parabolic confinement potential) or rather sharp/stepwise
(i.e., for a hard-wall potential), as distinct from infinite channels where
this transition is abrupt. This result can be explained by qualitatively
different distributions of the particle density for the different confinement
potentials.Comment: 13 pages, 11 figure
- …