6,149 research outputs found

    Quantum Generative Adversarial Networks for Learning and Loading Random Distributions

    Full text link
    Quantum algorithms have the potential to outperform their classical counterparts in a variety of tasks. The realization of the advantage often requires the ability to load classical data efficiently into quantum states. However, the best known methods require O(2n)\mathcal{O}\left(2^n\right) gates to load an exact representation of a generic data structure into an nn-qubit state. This scaling can easily predominate the complexity of a quantum algorithm and, thereby, impair potential quantum advantage. Our work presents a hybrid quantum-classical algorithm for efficient, approximate quantum state loading. More precisely, we use quantum Generative Adversarial Networks (qGANs) to facilitate efficient learning and loading of generic probability distributions -- implicitly given by data samples -- into quantum states. Through the interplay of a quantum channel, such as a variational quantum circuit, and a classical neural network, the qGAN can learn a representation of the probability distribution underlying the data samples and load it into a quantum state. The loading requires O(poly(n))\mathcal{O}\left(poly\left(n\right)\right) gates and can, thus, enable the use of potentially advantageous quantum algorithms, such as Quantum Amplitude Estimation. We implement the qGAN distribution learning and loading method with Qiskit and test it using a quantum simulation as well as actual quantum processors provided by the IBM Q Experience. Furthermore, we employ quantum simulation to demonstrate the use of the trained quantum channel in a quantum finance application.Comment: 14 pages, 13 figure

    Between War and Peace: Humanitarian Assistance in Violent Urban Settings

    Get PDF
    Cities are fast becoming new territories of violence. The humanitarian consequences of many criminally violent urban settings are comparable to those of more traditional wars, yet despite the intensity of the needs, humanitarian aid to such settings is limited. The way in which humanitarian needs are typically defined, fails to address the problems of these contexts, the suffering they produce and the populations affected. Distinctions between formal armed conflicts, regulated by international humanitarian law, and other violent settings, as well as those between emergency and developmental assistance, can lead to the neglect of populations in distress. It can take a lot of time and effort to access vulnerable communities and implement programmes in urban settings, but experience shows that it is possible to provide humanitarian assistance with a significant focus on the direct and indirect health consequences of violence outside a traditional conflict setting. This paper considers the situation of Port-au-Prince (Haiti), Rio de Janeiro (Brazil) and Guatemala City (Guatemala)

    Variance Reduced Stochastic Gradient Descent with Neighbors

    Full text link
    Stochastic Gradient Descent (SGD) is a workhorse in machine learning, yet its slow convergence can be a computational bottleneck. Variance reduction techniques such as SAG, SVRG and SAGA have been proposed to overcome this weakness, achieving linear convergence. However, these methods are either based on computations of full gradients at pivot points, or on keeping per data point corrections in memory. Therefore speed-ups relative to SGD may need a minimal number of epochs in order to materialize. This paper investigates algorithms that can exploit neighborhood structure in the training data to share and re-use information about past stochastic gradients across data points, which offers advantages in the transient optimization phase. As a side-product we provide a unified convergence analysis for a family of variance reduction algorithms, which we call memorization algorithms. We provide experimental results supporting our theory.Comment: Appears in: Advances in Neural Information Processing Systems 28 (NIPS 2015). 13 page

    Fast Point Spread Function Modeling with Deep Learning

    Full text link
    Modeling the Point Spread Function (PSF) of wide-field surveys is vital for many astrophysical applications and cosmological probes including weak gravitational lensing. The PSF smears the image of any recorded object and therefore needs to be taken into account when inferring properties of galaxies from astronomical images. In the case of cosmic shear, the PSF is one of the dominant sources of systematic errors and must be treated carefully to avoid biases in cosmological parameters. Recently, forward modeling approaches to calibrate shear measurements within the Monte-Carlo Control Loops (MCCLMCCL) framework have been developed. These methods typically require simulating a large amount of wide-field images, thus, the simulations need to be very fast yet have realistic properties in key features such as the PSF pattern. Hence, such forward modeling approaches require a very flexible PSF model, which is quick to evaluate and whose parameters can be estimated reliably from survey data. We present a PSF model that meets these requirements based on a fast deep-learning method to estimate its free parameters. We demonstrate our approach on publicly available SDSS data. We extract the most important features of the SDSS sample via principal component analysis. Next, we construct our model based on perturbations of a fixed base profile, ensuring that it captures these features. We then train a Convolutional Neural Network to estimate the free parameters of the model from noisy images of the PSF. This allows us to render a model image of each star, which we compare to the SDSS stars to evaluate the performance of our method. We find that our approach is able to accurately reproduce the SDSS PSF at the pixel level, which, due to the speed of both the model evaluation and the parameter estimation, offers good prospects for incorporating our method into the MCCLMCCL framework.Comment: 25 pages, 8 figures, 1 tabl

    Cosmological constraints from noisy convergence maps through deep learning

    Full text link
    Deep learning is a powerful analysis technique that has recently been proposed as a method to constrain cosmological parameters from weak lensing mass maps. Due to its ability to learn relevant features from the data, it is able to extract more information from the mass maps than the commonly used power spectrum, and thus achieve better precision for cosmological parameter measurement. We explore the advantage of Convolutional Neural Networks (CNN) over the power spectrum for varying levels of shape noise and different smoothing scales applied to the maps. We compare the cosmological constraints from the two methods in the ΩMσ8\Omega_M-\sigma_8 plane for sets of 400 deg2^2 convergence maps. We find that, for a shape noise level corresponding to 8.53 galaxies/arcmin2^2 and the smoothing scale of σs=2.34\sigma_s = 2.34 arcmin, the network is able to generate 45% tighter constraints. For smaller smoothing scale of σs=1.17\sigma_s = 1.17 the improvement can reach 50%\sim 50 \%, while for larger smoothing scale of σs=5.85\sigma_s = 5.85, the improvement decreases to 19%. The advantage generally decreases when the noise level and smoothing scales increase. We present a new training strategy to train the neural network with noisy data, as well as considerations for practical applications of the deep learning approach.Comment: 17 pages, 12 figure
    corecore