3,677 research outputs found

    LAGEOS-type Satellites in Critical Supplementary Orbit Configuration and the Lense-Thirring Effect Detection

    Full text link
    In this paper we analyze quantitatively the concept of LAGEOS--type satellites in critical supplementary orbit configuration (CSOC) which has proven capable of yielding various observables for many tests of General Relativity in the terrestrial gravitational field, with particular emphasis on the measurement of the Lense--Thirring effect.Comment: LaTex2e, 20 pages, 7 Tables, 6 Figures. Changes in Introduction, Conclusions, reference added, accepted for publication in Classical and Quantum Gravit

    Can noncommutativity resolve the Big-Bang singularity?

    Full text link
    A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has noncommutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a modification of the Kasner metric is constructed which is commutative only at large time scales. At small time scales, near the singularity, the commutation relations among the space coordinates diverge. We interpret this result as meaning that the singularity has been completely delocalized.Comment: Latex, 13 pages, 2 figures, accepted for publication in EPJ

    Will the recently approved LARES mission be able to measure the Lense-Thirring effect at 1%?

    Full text link
    After the approval by the Italian Space Agency of the LARES satellite, which should be launched at the end of 2009 with a VEGA rocket and whose claimed goal is a about 1% measurement of the general relativistic gravitomagnetic Lense-Thirring effect in the gravitational field of the spinning Earth, it is of the utmost importance to reliably assess the total realistic accuracy that can be reached by such a mission. The observable is a linear combination of the nodes of the existing LAGEOS and LAGEOS II satellites and of LARES able to cancel out the impact of the first two even zonal harmonic coefficients of the multipolar expansion of the classical part of the terrestrial gravitational potential representing a major source of systematic error. While LAGEOS and LAGEOS II fly at altitudes of about 6000 km, LARES will be placed at an altitude of 1450 km. Thus, it will be sensitive to much more even zonals than LAGEOS and LAGEOS II. Their corrupting impact \delta\mu has been evaluated by using the standard Kaula's approach up to degree L=70 along with the sigmas of the covariance matrices of eight different global gravity solutions (EIGEN-GRACE02S, EIGEN-CG03C, GGM02S, GGM03S, JEM01-RL03B, ITG-Grace02s, ITG-Grace03, EGM2008) obtained by five institutions (GFZ, CSR, JPL, IGG, NGA) with different techniques from long data sets of the dedicated GRACE mission. It turns out \delta\mu about 100-1000% of the Lense-Thirring effect. An improvement of 2-3 orders of magnitude in the determination of the high degree even zonals would be required to constrain the bias to about 1-10%.Comment: Latex, 15 pages, 1 table, no figures. Final version matching the published one in General Relativity and Gravitation (GRG

    Algebraic characterization of the Wess-Zumino consistency conditions in gauge theories

    Full text link
    A new way of solving the descent equations corresponding to the Wess-Zumino consistency conditions is presented. The method relies on the introduction of an operator δ\delta which allows to decompose the exterior space-time derivative dd as a BRSBRS commutator. The case of the Yang-Mills theories is treated in detail.Comment: 16 pages, UGVA-DPT 1992/08-781 to appear in Comm. Math. Phy

    On the Lense-Thirring test with the Mars Global Surveyor in the gravitational field of Mars

    Full text link
    I discuss some aspects of the recent test of frame-dragging performed by me by exploiting the Root-Mean-Square (RMS) orbit overlap differences of the out-of-plane component N of the orbit of the Mars Global Surveyor (MGS) spacecraft in the gravitational field of Mars. A linear fit of the full time series of the entire MGS data (4 February 1999-14 January 2005) yields a normalized slope 1.03 +/- 0.41 (with 95% confidence bounds). Other linear fits to different data sets confirm the agreement with general relativity. The huge systematic effects induced by the mismodeling in the martian gravitational field claimed by some authors are absent in the MGS out-of-plane record. The non-gravitational forces affect at the same level of the gravitomagnetic one the in-plane orbital components of MGS, not the out-of-plane one. Moreover, they experience high-frequency variations which does not matter in the present case in which secular effects are relevant.Comment: LaTex2e, 8 pages, no figures, no tables, 17 references. It refers to K. Krogh, Class. Quantum Grav., 24, 5709-5715, 2007 based on astro-ph/0701653. Final version to appear in CEJP (Central European Journal of Physics

    An Algebraic Criterion for the Ultraviolet Finiteness of Quantum Field Theories

    Get PDF
    An algebraic criterion for the vanishing of the beta function for renormalizable quantum field theories is presented. Use is made of the descent equations following from the Wess-Zumino consistency condition. In some cases, these equations relate the fully quantized action to a local gauge invariant polynomial. The vanishing of the anomalous dimension of this polynomial enables us to establish a nonrenormalization theorem for the beta function βg\beta_g, stating that if the one-loop order contribution vanishes, then βg\beta_g will vanish to all orders of perturbation theory. As a by-product, the special case in which βg\beta_g is only of one-loop order, without further corrections, is also covered. The examples of the N=2,4 supersymmetric Yang-Mills theories are worked out in detail.Comment: 1+32 pages, LaTeX2e, typos correcte

    A mean-field version of the Nicodemi-Prisco SSB model for X-chromosome inactivation

    Full text link
    Nicodemi and Prisco recently proposed a model for X-chromosome inactivation in mammals, explaining this phenomenon in terms of a spontaneous symmetry-breaking mechanism [{\it Phys. Rev. Lett.} 99 (2007), 108104]. Here we provide a mean-field version of their model

    An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging

    Full text link
    We deal with the attempts to measure the Lense-Thirring effect with the Satellite Laser Ranging (SLR) technique applied to the existing LAGEOS and LAGEOS II terrestrial satellites and to the recently approved LARES spacecraft.The first issue addressed here is: are the so far published evaluations of the systematic uncertainty induced by the bad knowledge of the even zonal harmonic coefficients J_L of the multipolar expansion of the Earth's geopotential reliable and realistic? Our answer is negative. Indeed, if the differences Delta J_L among the even zonals estimated in different Earth's gravity field global solutions from the dedicated GRACE mission are assumed for the uncertainties delta J_L instead of using their covariance sigmas sigma_JL, it turns out that the systematic uncertainty \delta\mu in the Lense-Thirring test with the nodes Omega of LAGEOS and LAGEOS II may be up to 3 to 4 times larger than in the evaluations so far published (5−105-10%) based on the use of the sigmas of one model at a time separately. The second issue consists of the possibility of using a different approach in extracting the relativistic signature of interest from the LAGEOS-type data. The third issue is the possibility of reaching a realistic total accuracy of 1% with LAGEOS, LAGEOS II and LARES, which should be launched in November 2009 with a VEGA rocket. While LAGEOS and LAGEOS II fly at altitudes of about 6000 km, LARES will be likely placed at an altitude of 1450 km. Thus, it will be sensitive to much more even zonals than LAGEOS and LAGEOS II. Their corrupting impact has been evaluated with the standard Kaula's approach up to degree L=60 by using Delta J_L and sigma_JL; it turns out that it may be as large as some tens percent.Comment: LaTex, 19 pages, 1 figure, 12 tables. Invited and refereed contribution to The ISSI Workshop, 6-10 October 2008, on The Nature of Gravity Confronting Theory and Experiment in Space To appear in Space Science Review
    • …
    corecore