75 research outputs found

    State dependency of inhibitory control performance: an electrical neuroimaging study

    Get PDF
    Behavioral and brain responses to stimuli not only depend on their physical features but also on the individuals' neurocognitive states before stimuli onsets. While the influence of pre-stimulus fluctuations in brain activity on low-level perceptive processes is well established, the state dependency of high-order executive processes remains unclear. Using a classical inhibitory control Go/NoGo task, we examined whether and how fluctuations in the brain activity during the period preceding the stimuli triggering inhibition influenced inhibitory control performance. Seventeen participants completed the Go/NoGo task while 64-channel electroencephalogram was recorded. We compared the event-related potentials preceding the onset of the NoGo stimuli associated with inhibition failures false alarms (FA) vs. successful inhibition correct rejections (CR) with data-driven statistical analyses of global measures of the topography and strength of the scalp electric field. Distributed electrical source estimations were used to localize the origin of the event-related potentials modulations. We observed differences in the global field power of the event-related potentials (FA > CR) without concomitant topographic modulations over the 40 ms period immediately preceding NoGo stimuli. This result indicates that the same brain networks were engaged in the two conditions, but more strongly before FA than CR. Source estimations revealed that this effect followed from a higher activity before FA than CR within bilateral inferior frontal gyri and the right inferior parietal lobule. These findings suggest that uncontrolled quantitative variations in pre-stimulus activity within attentional and control brain networks influence inhibition performance. The present data thereby demonstrate the state dependency of cognitive processes of up to high- order executive levels

    State dependency of inhibitory control performance: an electrical neuroimaging study

    Get PDF
    Behavioral and brain responses to stimuli not only depend on their physical features but also on the individuals' neurocognitive states before stimuli onsets. While the influence of pre-stimulus fluctuations in brain activity on low-level perceptive processes is well established, the state dependency of high-order executive processes remains unclear. Using a classical inhibitory control Go/NoGo task, we examined whether and how fluctuations in the brain activity during the period preceding the stimuli triggering inhibition influenced inhibitory control performance. Seventeen participants completed the Go/NoGo task while 64-channel electroencephalogram was recorded. We compared the event-related potentials preceding the onset of the NoGo stimuli associated with inhibition failures false alarms (FA) vs. successful inhibition correct rejections (CR) with data-driven statistical analyses of global measures of the topography and strength of the scalp electric field. Distributed electrical source estimations were used to localize the origin of the event-related potentials modulations. We observed differences in the global field power of the event-related potentials (FA > CR) without concomitant topographic modulations over the 40 ms period immediately preceding NoGo stimuli. This result indicates that the same brain networks were engaged in the two conditions, but more strongly before FA than CR. Source estimations revealed that this effect followed from a higher activity before FA than CR within bilateral inferior frontal gyri and the right inferior parietal lobule. These findings suggest that uncontrolled quantitative variations in pre-stimulus activity within attentional and control brain networks influence inhibition performance. The present data thereby demonstrate the state dependency of cognitive processes of up to high- order executive levels

    Mental flexibility depends on a largely distributed white matter network: Causal evidence from connectome-based lesion-symptom mapping.

    Get PDF
    Mental flexibility (MF) refers to the capacity to dynamically switch from one task to another. Current neurocognitive models suggest that since this function requires interactions between multiple remote brain areas, the integrity of the anatomic tracts connecting these brain areas is necessary to maintain performance. We tested this hypothesis by assessing with a connectome-based lesion-symptom mapping approach the effects of white matter lesions on the brain's structural connectome and their association with performance on the trail making test, a neuropsychological test of MF, in a sample of 167 first unilateral stroke patients. We found associations between MF deficits and damage of i) left lateralized fronto-temporo-parietal connections and interhemispheric connections between left temporo-parietal and right parietal areas; ii) left cortico-basal connections; and iii) left cortico-pontine connections. We further identified a relationship between MF and white matter disconnections within cortical areas composing the cognitive control, default mode and attention functional networks. These results for a central role of white matter integrity in MF extend current literature by providing causal evidence for a functional interdependence among the regional cortical and subcortical structures composing the MF network. Our results further emphasize the necessity to consider connectomics in lesion-symptom mapping analyses to establish comprehensive neurocognitive models of high-order cognitive functions

    Language specificity of lexical-phonological therapy in bilingual aphasia: A clinical and electrophysiological study

    Get PDF
    Based on findings for overlapping representations of bilingual people's first (L1) and second (L2) languages, unilingual therapies of bilingual aphasia have been proposed to benefit the untrained language. However, the generalisation patterns of intra- and cross-language and phonological therapy and their neural bases remain unclear. We tested whether the effects of an intensive lexical-phonological training (LPT) in L2 transferred to L1 word production in a Persian-French bilingual stroke patient with Broca's aphasia. Language performance was assessed using the Bilingual Aphasia Test, a 144-item picture naming (PN) task and a word–picture verification (WPV) task. Electroencephalography (EEG) was recorded during PN and WPV in both languages before and after an LPT in French on a wordlist from the PN task. After the therapy, naming improved only for the treated L2 items. The naming performance improved neither in the untrained L2 items nor in the corresponding items in L1. EEG analyses revealed a Language x Session topographic interaction at 540 ms post-stimulus, driven by a modification of the electrophysiological response to the treated L2 but not L1 items. These results indicate that LPT modified the brain networks engaged in the phonological-phonetic processing during naming only in the trained language for the trained items

    Hemispheric competence for auditory spatial representation

    Get PDF
    Sound localization relies on the analysis of interaural time and intensity differences, as well as attenuation patterns by the outer ear. We investigated the relative contributions of interaural time and intensity difference cues to sound localization by testing 60 healthy subjects: 25 with focal left and 25 with focal right hemispheric brain damage. Group and single-case behavioural analyses, as well as anatomo-clinical correlations, confirmed that deficits were more frequent and much more severe after right than left hemispheric lesions and for the processing of interaural time than intensity difference cues. For spatial processing based on interaural time difference cues, different error types were evident in the individual data. Deficits in discriminating between neighbouring positions occurred in both hemispaces after focal right hemispheric brain damage, but were restricted to the contralesional hemispace after focal left hemispheric brain damage. Alloacusis (perceptual shifts across the midline) occurred only after focal right hemispheric brain damage and was associated with minor or severe deficits in position discrimination. During spatial processing based on interaural intensity cues, deficits were less severe in the right hemispheric brain damage than left hemispheric brain damage group and no alloacusis occurred. These results, matched to anatomical data, suggest the existence of a binaural sound localization system predominantly based on interaural time difference cues and primarily supported by the right hemisphere. More generally, our data suggest that two distinct mechanisms contribute to: (i) the precise computation of spatial coordinates allowing spatial comparison within the contralateral hemispace for the left hemisphere and the whole space for the right hemisphere; and (ii) the building up of global auditory spatial representations in right temporo-parietal cortice

    Impairment of both languages in late bilinguals with dementia of the Alzheimer type

    Get PDF
    Neuropsychological theories raise the question if in late bilinguals with dementia of the Alzheimer type (DAT), the second language (L2) may be more impaired than the first (L1). We compared language performance in different tasks of oral comprehension (semantic and syntactic) and production (naming, repetition and fluency) in L1 and L2 in a group of 13 late proficient bilinguals wit DAT immersion, and a matched control group of 12 healthy late bilinguals. Two-way mixed repeated-measure ANOVAs with factors Language and Group revealed main effects of Group (p %lt; .05) indicating that DAT affects all aspects of language. There was no Group × Language interaction, suggesting that DAT affects both languages similarly. Our study thus shows that neurodegenerative diseases affect L1 and L2 in a parallel manner, particularly at the levels of semantic, lexical and syntactic processing. These results speak in favour of a shared L1 and L2 network in late bilinguals

    Spatiotemporal brain dynamics supporting the immediate automatization of inhibitory control by implementation intentions

    Get PDF
    While cognitive interventions aiming at reinforcing intentional executive control of unwanted response showed only modest effects on impulse control disorders, the establishment of fast automatic, stimulus-driven inhibition of responses to specific events with implementation intention self-regulation strategies has proven to be an effective remediation approach. However, the neurocognitive mechanisms underlying implementation intentions remain largely unresolved. We addressed this question by comparing electrical neuroimaging analyses of event-related potentials recorded during a Go/NoGo task between groups of healthy participants receiving either standard or implementation intentions instructions on the inhibition stimuli. Inhibition performance improvements with implementation intentions were associated with a Group by Stimulus interaction 200–250 ms post-stimulus onset driven by a selective decrease in response to the inhibition stimuli within the left superior temporal gyrus, the right precuneus and the right temporo-parietal junction. We further observed that the implementation intentions group showed already at the beginning of the task the pattern of task-related functional activity reached after practice in the group having received standard instructions. We interpret our results in terms of an immediate establishment of an automatic, bottom-up form of inhibitory control by implementation intentions, supported by stimulus-driven retrieval of verbally encoded stimulus- response mapping rules, which in turn triggered inhibitory processes

    Spatiotemporal brain dynamics underlying attentional bias modifications

    Get PDF
    Exaggerated attentional biases toward specific elements of the environment contribute to the maintenance of several psychiatric conditions, such as biases to threatening faces in social anxiety. Although recent literature indicates that attentional bias modification may constitute an effective approach for psychiatric remediation, the underlying neurophysiological mechanisms remain unclear. We addressed this question by recording EEG in 24 healthy participants performing a modified dot-probe task in which pairs of neutral cues (colored shapes) were replaced by probe stimuli requiring a discrimination judgment. To induce an attentional bias toward or away from the cues, the probes were systematically presented either at the same or at the opposite position of a specific cue color. This paradigm enabled participants to spontaneously develop biases to initially unbiased, neutral cues, as measured by the response speed to the probe presented after the cues. Behavioral result indicated that the ABM procedure induced approach and avoidance biases. The influence of ABM on inhibitory control was assessed in a separated Go/NoGo task: changes in AB did not influence participants' capacity to inhibit their responses to the cues. Attentional bias modification was associated with a topographic modulation of event-related potentials already 50–84 ms following the onset of the cues. Statistical analyses of distributed electrical source estimations revealed that the development of attentional biases was associated with decreased activity in the left temporo-parieto-occipital junction. These findings suggest that attentional bias modification affects early sensory processing phases related to the extraction of information based on stimulus saliency

    Inter- and Intrahemispheric Dissociations in Ideomotor Apraxia: A Large-Scale Lesion-Symptom Mapping Study in Subacute Brain-Damaged Patients

    Get PDF
    Pantomimes of object use require accurate representations of movements and a selection of the most task-relevant gestures. Prominent models of praxis, corroborated by functional neuroimaging studies, predict a critical role for left parietal cortices in pantomime and advance that these areas store representations of tool use. In contrast, lesion data points to the involvement of left inferior frontal areas, suggesting that defective selection of movement features is the cause of pantomime errors. We conducted a large-scale voxel-based lesion-symptom mapping analyses with configural/spatial (CS) and body-part-as-object (BPO) pantomime errors of 150 left and right brain-damaged patients. Our results confirm the left hemisphere dominance in pantomime. Both types of error were associated with damage to left inferior frontal regions in tumor and stroke patients. While CS pantomime errors were associated with left temporoparietal lesions in both stroke and tumor patients, these errors appeared less associated with parietal areas in stroke than in tumor patients and less associated with temporal in tumor than stroke patients. BPO errors were associated with left inferior frontal lesions in both tumor and stroke patients. Collectively, our results reveal a left intrahemispheric dissociation for various aspects of pantomime, but with an unspecific role for inferior frontal region

    High and Low Stimulus-Driven Conflict Engage Segregated Brain Networks, Not Quantitatively Different Resources

    Get PDF
    Task-irrelevant information is constantly present in our environment and may interfere with the processing of the information necessary to achieve goal-directed behavior. While task goals determine which information must be suppressed, the demand for inhibitory control depends on the strength of the interference induced by incoming, task-irrelevant information. Whether the same or distinct inhibitory processes are engaged to suppress various degrees of interference from task-irrelevant information remains largely unresolved. We investigated this question by manipulating the strength of the conflict induced by automatic word reading in a classical color Stroop task. High conflict was induced by presenting words in participant's native language and low conflict by presenting words in a less familiar language. Behavioral performance and electrical neuroimaging analyses of event-related potentials to the words were analyzed following a two-by-two within-subject design with factors conflict strength (high; low) and color word/word ink congruency (congruent; incongruent). Behaviorally, we observed a significant conflict strength×congruency driven by a smaller Stroop effect in the low- than high conflict condition. Electrophysiologically, we observed a significant conflict strength×congruency interaction at the topographic level during the period of the N450 components, indicative of the engagement of distinct configurations of brain networks. No such interaction was found at the level of response strength. Electrical sources analyses localized the topographic effect within the anterior cingulate cortex and basal ganglia, left middle frontal and occipital areas. We interpret our results in terms of qualitatively distinct executive mechanisms for reactive inhibitory control in conditions of high versus low stimulus-driven conflict
    • …
    corecore