2,479 research outputs found

    Forcing neurocontrollers to exploit sensory symmetry through hard-wired modularity in the game of Cellz

    Get PDF
    Several attempts have been made in the past to construct encoding schemes that allow modularity to emerge in evolving systems, but success is limited. We believe that in order to create successful and scalable encodings for emerging modularity, we first need to explore the benefits of different types of modularity by hard-wiring these into evolvable systems. In this paper we explore different ways of exploiting sensory symmetry inherent in the agent in the simple game Cellz by evolving symmetrically identical modules. It is concluded that significant increases in both speed of evolution and final fitness can be achieved relative to monolithic controllers. Furthermore, we show that a simple function approximation task that exhibits sensory symmetry can be used as a quick approximate measure of the utility of an encoding scheme for the more complex game-playing task

    Evolving controllers for simulated car racing

    Get PDF
    This paper describes the evolution of controllers for racing a simulated radio-controlled car around a track, modelled on a real physical track. Five different controller architectures were compared, based on neural networks, force fields and action sequences. The controllers use either egocentric (first person), Newtonian (third person) or no information about the state of the car (open-loop controller). The only controller that is able to evolve good racing behaviour is based on a neural network acting on egocentric inputs

    Arms races and car races

    Get PDF
    Evolutionary car racing (ECR) is extended to the case of two cars racing on the same track. A sensor representation is devised, and various methods of evolving car controllers for competitive racing are explored. ECR can be combined with co-evolution in a wide variety of ways, and one aspect which is explored here is the relative-absolute fitness continuum. Systematical behavioural differences are found along this continuum; further, a tendency to specialization and the reactive nature of the controller architecture are found to limit evolutionary progress

    Evolving robust and specialized car racing skills

    Get PDF
    Neural network-based controllers are evolved for racing simulated R/C cars around several tracks of varying difficulty. The transferability of driving skills acquired when evolving for a single track is evaluated, and different ways of evolving controllers able to perform well on many different tracks are investigated. It is further shown that such generally proficient controllers can reliably be developed into specialized controllers for individual tracks. Evolution of sensor parameters together with network weights is shown to lead to higher final fitness, but only if turned on after a general controller is developed, otherwise it hinders evolution. It is argued that simulated car racing is a scalable and relevant testbed for evolutionary robotics research, and that the results of this research can be useful for commercial computer games

    Making Racing Fun Through Player Modeling and Track Evolution

    Get PDF
    This paper addresses the problem of automatically constructing tracks tailor-made to maximize the enjoyment of individual players in a simple car racing game. To this end, some approaches to player modeling are investigated, and a method of using evolutionary algorithms to construct racing tracks is presented. A simple player-dependent metric of entertainment is proposed and used as the fitness function when evolving tracks. We conclude that accurate player modeling poses some significant challenges, but track evolution works well given the right track representation

    Evolution of Neural Networks for Helicopter Control: Why Modularity Matters

    Get PDF
    The problem of the automatic development of controllers for vehicles for which the exact characteristics are not known is considered in the context of miniature helicopter flocking. A methodology is proposed in which neural network based controllers are evolved in a simulation using a dynamic model qualitatively similar to the physical helicopter. Several network architectures and evolutionary sequences are investigated, and two approaches are found that can evolve very competitive controllers. The division of the neural network into modules and of the task into incremental steps seems to be a precondition for success, and we analyse why this might be so

    Spanish generation from Spanish Sign Language using a phrase-based translation system

    Get PDF
    This paper describes the development of a Spoken Spanish generator from Spanish Sign Language (LSE – Lengua de Signos Española) in a specific domain: the renewal of Identity Document and Driver’s license. The system is composed of three modules. The first one is an interface where a deaf person can specify a sign sequence in sign-writing. The second one is a language translator for converting the sign sequence into a word sequence. Finally, the last module is a text to speech converter. Also, the paper describes the generation of a parallel corpus for the system development composed of more than 4,000 Spanish sentences and their LSE translations in the application domain. The paper is focused on the translation module that uses a statistical strategy with a phrase-based translation model, and this paper analyses the effect of the alignment configuration used during the process of word based translation model generation. Finally, the best configuration gives a 3.90% mWER and a 0.9645 BLEU
    • 

    corecore