15,045 research outputs found

    Injection locking of two frequency-doubled lasers with 3.2 GHz offset for driving Raman transitions with low photon scattering in 43^{43}Ca+^+

    Full text link
    We describe the injection locking of two infrared (794 nm) laser diodes which are each part of a frequency-doubled laser system. An acousto-optic modulator (AOM) in the injection path gives an offset of 1.6 GHz between the lasers for driving Raman transitions between states in the hyperfine split (by 3.2 GHz) ground level of 43^{43}Ca+^+. The offset can be disabled for use in 40^{40}Ca+^+. We measure the relative linewidth of the frequency-doubled beams to be 42 mHz in an optical heterodyne measurement. The use of both injection locking and frequency doubling combines spectral purity with high optical power. Our scheme is applicable for providing Raman beams across other ion species and neutral atoms where coherent optical manipulation is required.Comment: 3 pages, 3 figure

    A microfabricated ion trap with integrated microwave circuitry

    Full text link
    We describe the design, fabrication and testing of a surface-electrode ion trap, which incorporates microwave waveguides, resonators and coupling elements for the manipulation of trapped ion qubits using near-field microwaves. The trap is optimised to give a large microwave field gradient to allow state-dependent manipulation of the ions' motional degrees of freedom, the key to multiqubit entanglement. The microwave field near the centre of the trap is characterised by driving hyperfine transitions in a single laser-cooled 43Ca+ ion.Comment: 4 pages, 5 figure

    High-fidelity preparation, gates, memory and readout of a trapped-ion quantum bit

    Full text link
    We implement all single-qubit operations with fidelities significantly above the minimum threshold required for fault-tolerant quantum computing, using a trapped-ion qubit stored in hyperfine "atomic clock" states of 43^{43}Ca+^+. We measure a combined qubit state preparation and single-shot readout fidelity of 99.93%, a memory coherence time of T2∗=50T^*_2=50 seconds, and an average single-qubit gate fidelity of 99.9999%. These results are achieved in a room-temperature microfabricated surface trap, without the use of magnetic field shielding or dynamic decoupling techniques to overcome technical noise.Comment: Supplementary Information included. 6 nines, 7 figures, 8 page

    Planning the obstetric airway

    Get PDF

    High-fidelity quantum logic gates using trapped-ion hyperfine qubits

    Full text link
    We demonstrate laser-driven two-qubit and single-qubit logic gates with fidelities 99.9(1)% and 99.9934(3)% respectively, significantly above the approximately 99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed/fidelity trade-off for the two-qubit gate, for gate times between 3.8μ\mus and 520μ\mus, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.Comment: 1 trap, 2 ions, 3 nines. Detailed write-up of arXiv:1406.5473 including single-qubit gate data als

    Quantitative Imaging in Electron and Confocal Microscopies for Applications in Biology

    Get PDF
    Among the large number of topics related to the quantification of images in electron and confocal microscopies for applications in biology, we selected four subjects that we consider to be representative of some recent tendencies. The first is the quantification of three-dimensional data sets recorded routinely in scanning confocal microscopy. The second is the quantification of the textural and fractal appearance of images. The two other topics are related to image series, which are more and more often provided by imaging instruments. The first kind of series concerns electron energy-filtered images. We show that the parametric (modelling) approach can be complemented by non-parametric approaches (e.g., different variants of multivariate statistical techniques). The other kind of series consists of multiple mappings of a specimen. We describe several new tools for the study and quantification of the co-location, with potential application to multiple mappings in microanalysis or in fluorescence microscopy
    • …
    corecore