44 research outputs found

    Essential Infantile Esotropia: A Course of Treatment From Our Experience

    Get PDF
    Background: Essential infantile esotropia (EIE) is the most common type of childhood esotropia. Although its classical approach is surgical, less invasive techniques have been proposed as an adjunct or alternative to traditional surgery. Among them, chemodenervation with botulinum toxin (BT) has been investigated, showing variable and sometimes conflicting results.& nbsp;Objectives: To compare the outcomes of bilateral BT injection and traditional surgery in a pediatric population with EIE in order to optimize and standardize the therapeutic approach. Other purposes are to evaluate whether early intervention may prevent the onset of vertical ocular deviation (which is part of the clinical picture of EIE) and/or influence the development of fine stereopsis, and also to assess changes in refractive status over time among the enrolled population.& nbsp;Methods: A retrospective consecutive cohort study was conducted in 86 children aged 0-48 months who underwent correction of EIE. The primary intervention in naive subjects was either bilateral BT injection (36 subjects, "BT group ") or strabismus surgery (50 subjects, "surgery group ").& nbsp;Results: Overall, BT chemodenervation (one or two injections) was effective in 13 (36.1%) subjects. With regard to residual deviation angle, the outcomes at least 5 years after the last intervention were overlapping in children receiving initial treatment with either injection or surgery; however, the success rate of primary intervention in the surgery group was higher, and the average number of interventions necessary to achieve orthotropia was smaller. Both early treatment with chemodenervation and surgery at a later age were not found to prevent the onset of vertical ocular deviation, whereas, surprisingly, the percentage of subjects developing fine stereopsis was higher in the surgery group. Finally, with regard to the change in refractive status over time, most of the subjects increased their initial hyperopia, whereas 10% became myopic.& nbsp;Conclusions: Our data suggest that a single bilateral BT injection by age 2 years should be considered as the first-line treatment of EIE without vertical component; whereas, traditional surgery should be considered as the first-line treatment for all other cases and in subjects unresponsive to primary single BT injection

    Neurobiological Dysfunctional Substrates for the Self-Medication Hypothesis in Adult Individuals with Attention-Deficit Hyperactivity Disorder and Cocaine Use Disorder:A Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography Study

    Get PDF
    Objectives: Attention-deficit hyperactivity disorder (ADHD) in adulthood shows high co-occurrence rates with cocaine use disorder (CoUD). The self-medication hypothesis (SMH) provides a theoretical explanation for this comorbidity. This study investigates the neurobiological mechanisms that could support SMH in adult patients with attention-deficit hyperactivity disorder with cocaine use disorder (ADHD–CoUD).Materials and Methods: We included 19 ADHD–CoUD patients (84.2% male; age: 32.11 years [7.18]) and 16 CoUD patients (68.7% male; age: 36.63 years [8.12]). All subjects underwent a fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG PET) brain scan. We tested brain metabolism differences between ADHD–CoUD and CoUD patients using voxel-based and regions of interest (ROIs)-based analyses. The correlation between dependence/abstinence duration and regional brain metabolism was also assessed in the two groups. Lastly, we investigated the integrity of brain metabolic connectivity of mesocorticolimbic and nigrostriatal dopaminergic systems, and large-scale brain networks involved in ADHD and addictions.Results: The voxel-wise and ROIs-based approaches showed that ADHD–CoUD patients had a lower metabolism in the thalamus and increased metabolism in the amygdala and parahippocampus, bilaterally, than CoUD subjects and healthy controls (HCs). Metabolism in the thalamus negatively correlated with years of dependence in ADHD–CoUD patients. Moreover, connectivity analyses revealed that ADHD–CoUD patients had a more preserved metabolic connectivity than CoUD patients in the dopaminergic networks and large-scale networks involved in self-regulation mechanisms of attention and behaviors (i.e., anterior default mode network [ADMN], executive network [ECN], and anterior salience network [aSAN]).Conclusions: We demonstrated distinct neuropathological substrates underlying substance-use behaviors in ADHD–CoUD and CoUD patients. Furthermore, we provided neurobiological evidence in support of SMH, demonstrating that ADHD–CoUD patients might experience short-term advantages of cocaine assumption (i.e., compensation of dopaminergic deficiency and related cognitive-behavioral deficits).</p

    Neurobiological Dysfunctional Substrates for the Self-Medication Hypothesis in Adult Individuals with Attention-Deficit Hyperactivity Disorder and Cocaine Use Disorder:A Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography Study

    Get PDF
    Objectives: Attention-deficit hyperactivity disorder (ADHD) in adulthood shows high co-occurrence rates with cocaine use disorder (CoUD). The self-medication hypothesis (SMH) provides a theoretical explanation for this comorbidity. This study investigates the neurobiological mechanisms that could support SMH in adult patients with attention-deficit hyperactivity disorder with cocaine use disorder (ADHD–CoUD).Materials and Methods: We included 19 ADHD–CoUD patients (84.2% male; age: 32.11 years [7.18]) and 16 CoUD patients (68.7% male; age: 36.63 years [8.12]). All subjects underwent a fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG PET) brain scan. We tested brain metabolism differences between ADHD–CoUD and CoUD patients using voxel-based and regions of interest (ROIs)-based analyses. The correlation between dependence/abstinence duration and regional brain metabolism was also assessed in the two groups. Lastly, we investigated the integrity of brain metabolic connectivity of mesocorticolimbic and nigrostriatal dopaminergic systems, and large-scale brain networks involved in ADHD and addictions.Results: The voxel-wise and ROIs-based approaches showed that ADHD–CoUD patients had a lower metabolism in the thalamus and increased metabolism in the amygdala and parahippocampus, bilaterally, than CoUD subjects and healthy controls (HCs). Metabolism in the thalamus negatively correlated with years of dependence in ADHD–CoUD patients. Moreover, connectivity analyses revealed that ADHD–CoUD patients had a more preserved metabolic connectivity than CoUD patients in the dopaminergic networks and large-scale networks involved in self-regulation mechanisms of attention and behaviors (i.e., anterior default mode network [ADMN], executive network [ECN], and anterior salience network [aSAN]).Conclusions: We demonstrated distinct neuropathological substrates underlying substance-use behaviors in ADHD–CoUD and CoUD patients. Furthermore, we provided neurobiological evidence in support of SMH, demonstrating that ADHD–CoUD patients might experience short-term advantages of cocaine assumption (i.e., compensation of dopaminergic deficiency and related cognitive-behavioral deficits).</p

    Atypical brain FDG-PET patterns increase the risk of long-term cognitive and motor progression in Parkinson's disease.

    Full text link
    peer reviewed[en] INTRODUCTION: Brain hypometabolism patterns have been previously associated with cognitive decline in Parkinson's disease (PD). Our aim is to evaluate the impact of single-subject fluorodeoxyglucose (FDG)-PET brain hypometabolism on long-term cognitive and motor outcomes in PD. METHODS: Forty-nine non-demented PD patients with baseline brain FDG-PET data underwent an extensive clinical follow-up for 8 years. The ability of FDG-PET to predict long-term cognitive and motor progression was evaluated using Cox regression and mixed ANCOVA models. RESULTS: Participants were classified according to FDG-PET pattern in PD with typical (n = 26) and atypical cortical metabolism (n = 23). Patients with atypical brain hypometabolic patterns showed higher incidence of dementia (60% vs 3%; HR = 18.3), hallucinations (56% vs 7%, HR = 7.3) and faster motor decline compared to typical pattern group. CONCLUSION: This study argues for specific patterns of FDG-PET cortical hypometabolism in PD as a prognostic marker for long term cognitive and motor outcomes at single-subject level

    Myasthenia Gravis following Low-Osmolality Iodinated Contrast Media

    No full text
    We describe the case of 79-year-old man admitted to our general hospital for a 6-week history of progressive dysphagia to solids and liquids associated with weight loss. To reach a diagnosis a total body CT scan with low-osmolality iodinate contrast agent was performed. Two hours later the patient developed an acute respiratory failure requiring orotracheal intubation and mechanical ventilation. The laboratory and neurological tests allow formulating the diagnosis of myasthenia gravis. In literature, other three case reports have associated myasthenic crisis with exposure to low-osmolality contrast media. This suggests being careful in administering low-osmolality contrast media in myasthenic patients

    In vivo MRI Structural and PET Metabolic Connectivity Study of Dopamine Pathways in Alzheimer's Disease.

    Full text link
    peer reviewedBACKGROUND: Alzheimer's disease (AD) is characterized by an involvement of brain dopamine (DA) circuitry, the presence of which has been associated with emergence of both neuropsychiatric symptoms and cognitive deficits. OBJECTIVE: In order to investigate whether and how the DA pathways are involved in the pathophysiology of AD, we assessed by in vivo neuroimaging the structural and metabolic alterations of subcortical and cortical DA pathways and targets. METHODS: We included 54 healthy control participants, 53 amyloid-positive subjects with mild cognitive impairment due to AD (MCI-AD), and 60 amyloid-positive patients with probable dementia due to AD (ADD), all with structural 3T MRI and 18F-FDG-PET scans. We assessed MRI-based gray matter reductions in the MCI-AD and ADD groups within an anatomical a priori-defined Nigrostriatal and Mesocorticolimbic DA pathways, followed by 18F-FDG-PET metabolic connectivity analyses to evaluate network-level metabolic connectivity changes. RESULTS: We found significant tissue loss in the Mesocorticolimbic over the Nigrostriatal pathway. Atrophy was evident in the ventral striatum, orbitofrontal cortex, and medial temporal lobe structures, and already plateaued in the MCI-AD stage. Degree of atrophy in Mesocorticolimbic regions positively correlated with the severity of depression, anxiety, and apathy in MCI-AD and ADD subgroups. Additionally, we observed significant alterations of metabolic connectivity between the ventral striatum and fronto-cingulate regions in ADD, but not in MCI-AD. There were no metabolic connectivity changes within the Nigrostriatal pathway. CONCLUSION: Our cross-sectional data support a clinically-meaningful, yet stage-dependent, involvement of the Mesocorticolimbic system in AD. Longitudinal and clinical correlation studies are needed to further establish the relevance of DA system involvement in AD

    Neurobiological Dysfunctional Substrates for the Self-Medication Hypothesis in Adult Individuals with Attention-Deficit Hyperactivity Disorder and Cocaine Use Disorder:A Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography Study

    Get PDF
    Objectives: Attention-deficit hyperactivity disorder (ADHD) in adulthood shows high co-occurrence rates with cocaine use disorder (CoUD). The self-medication hypothesis (SMH) provides a theoretical explanation for this comorbidity. This study investigates the neurobiological mechanisms that could support SMH in adult patients with attention-deficit hyperactivity disorder with cocaine use disorder (ADHD–CoUD).Materials and Methods: We included 19 ADHD–CoUD patients (84.2% male; age: 32.11 years [7.18]) and 16 CoUD patients (68.7% male; age: 36.63 years [8.12]). All subjects underwent a fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG PET) brain scan. We tested brain metabolism differences between ADHD–CoUD and CoUD patients using voxel-based and regions of interest (ROIs)-based analyses. The correlation between dependence/abstinence duration and regional brain metabolism was also assessed in the two groups. Lastly, we investigated the integrity of brain metabolic connectivity of mesocorticolimbic and nigrostriatal dopaminergic systems, and large-scale brain networks involved in ADHD and addictions.Results: The voxel-wise and ROIs-based approaches showed that ADHD–CoUD patients had a lower metabolism in the thalamus and increased metabolism in the amygdala and parahippocampus, bilaterally, than CoUD subjects and healthy controls (HCs). Metabolism in the thalamus negatively correlated with years of dependence in ADHD–CoUD patients. Moreover, connectivity analyses revealed that ADHD–CoUD patients had a more preserved metabolic connectivity than CoUD patients in the dopaminergic networks and large-scale networks involved in self-regulation mechanisms of attention and behaviors (i.e., anterior default mode network [ADMN], executive network [ECN], and anterior salience network [aSAN]).Conclusions: We demonstrated distinct neuropathological substrates underlying substance-use behaviors in ADHD–CoUD and CoUD patients. Furthermore, we provided neurobiological evidence in support of SMH, demonstrating that ADHD–CoUD patients might experience short-term advantages of cocaine assumption (i.e., compensation of dopaminergic deficiency and related cognitive-behavioral deficits).</p

    Neurobiological Dysfunctional Substrates for the Self-Medication Hypothesis in Adult Individuals with Attention-Deficit Hyperactivity Disorder and Cocaine Use Disorder:A Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography Study

    Get PDF
    Objectives: Attention-deficit hyperactivity disorder (ADHD) in adulthood shows high co-occurrence rates with cocaine use disorder (CoUD). The self-medication hypothesis (SMH) provides a theoretical explanation for this comorbidity. This study investigates the neurobiological mechanisms that could support SMH in adult patients with attention-deficit hyperactivity disorder with cocaine use disorder (ADHD–CoUD).Materials and Methods: We included 19 ADHD–CoUD patients (84.2% male; age: 32.11 years [7.18]) and 16 CoUD patients (68.7% male; age: 36.63 years [8.12]). All subjects underwent a fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG PET) brain scan. We tested brain metabolism differences between ADHD–CoUD and CoUD patients using voxel-based and regions of interest (ROIs)-based analyses. The correlation between dependence/abstinence duration and regional brain metabolism was also assessed in the two groups. Lastly, we investigated the integrity of brain metabolic connectivity of mesocorticolimbic and nigrostriatal dopaminergic systems, and large-scale brain networks involved in ADHD and addictions.Results: The voxel-wise and ROIs-based approaches showed that ADHD–CoUD patients had a lower metabolism in the thalamus and increased metabolism in the amygdala and parahippocampus, bilaterally, than CoUD subjects and healthy controls (HCs). Metabolism in the thalamus negatively correlated with years of dependence in ADHD–CoUD patients. Moreover, connectivity analyses revealed that ADHD–CoUD patients had a more preserved metabolic connectivity than CoUD patients in the dopaminergic networks and large-scale networks involved in self-regulation mechanisms of attention and behaviors (i.e., anterior default mode network [ADMN], executive network [ECN], and anterior salience network [aSAN]).Conclusions: We demonstrated distinct neuropathological substrates underlying substance-use behaviors in ADHD–CoUD and CoUD patients. Furthermore, we provided neurobiological evidence in support of SMH, demonstrating that ADHD–CoUD patients might experience short-term advantages of cocaine assumption (i.e., compensation of dopaminergic deficiency and related cognitive-behavioral deficits).</p
    corecore