8 research outputs found

    Melanoma Brain Metastases in the Era of Target Therapies: An Overview

    Get PDF
    Malignant melanoma is the third most common type of tumor that causes brain metastases. Patients with cerebral involvement have a dismal prognosis and their treatment is an unmet medical need. Brain involvement is a multistep process involving several signaling pathways such as Janus kinase/signal Transducer and Activator of Transcription (JAK/STAT), Phosphoinositide 3-kinase/Protein Kinase B (PI3K/AKT), Vascular Endothelial Growth Factor and Phosphatase and Tensin Homolog (PTEN). Recently therapy that targets the MAPK signaling (BRAF/MEK inhibitors) and immunotherapy (anti-CTLA4 and anti-PD1 agents) have changed the therapeutic approaches to stage IV melanoma. In contrast, there are no solid data about patients with brain metastases, who are usually excluded from clinical trials. Retrospective data showed that BRAF-inhibitors, alone or in combination with MEK-inhibitors have interesting clinical activity in this setting. Prospective data about the combinations of BRAF/MEK inhibitors have been recently published, showing an improved overall response rate. Short intracranial disease control is still a challenge. Several attempts have been made in order to improve it with combinations between local and systemic therapies. Immunotherapy approaches seem to retain promising activity in the treatment of melanoma brain metastasis as showed by the results of clinical trials investigating the combination of anti-CTL4 (Ipilimumab) and anti-PD1(Nivolumab). Studies about the combination or the sequential approach of target therapy and immunotherapy are ongoing, with immature results. Several clinical trials are ongoing trying to explore new approaches in order to overcome tumor resistance. At this moment the correct therapeutic choices for melanoma with intracranial involvement is still a challenge and new strategies are needed

    Current Controversies and Challenges on BRAF V600K-Mutant Cutaneous Melanoma

    Get PDF
    About 50% of melanomas harbour a BRAF mutation. Of these 50%, 10% have a V600K mutation. Although it is the second most common driver mutation after V600E, no specific studies have been conducted to identify a clinical and therapeutic gold standard for this patient subgroup. We analysed articles, including registrative clinical trials, to identify common clinical and biological traits of the V600K melanoma population, including different adopted therapeutic strategies. Melanoma V600K seems to be more frequent in Caucasian, male and elderly populations with a history of chronic sun damage and exposure. Prognosis is poor and no specific prognostic factor has been identified. Recent findings have underlined how melanoma V600K seems to be less dependent on the ERK/MAPK pathway, with a higher expression of PI3KB and a strong inhibition of multiple antiapoptotic pathways. Both target therapy with BRAF inhibitors + MEK inhibitors and immunotherapy with anti-checkpoint blockades are effective in melanoma V600K, although no sufficient evidence can currently support a formal recommendation for first line treatment choice in IIIC unresectable/IV stage patients. Still, melanoma V600K represents an unmet medical need and a marker of poor prognosis for cutaneous melanoma

    Apoptosis: a Janus bifrons in T-cell immunotherapy

    No full text
    Immunotherapy has revolutionized the treatment of cancer. In particular, immune checkpoint blockade, bispecific antibodies, and adoptive T-cell transfer have yielded unprecedented clinical results in hematological malignancies and solid cancers. While T cell-based immunotherapies have multiple mechanisms of action, their ultimate goal is achieving apoptosis of cancer cells. Unsurprisingly, apoptosis evasion is a key feature of cancer biology. Therefore, enhancing cancer cells’ sensitivity to apoptosis represents a key strategy to improve clinical outcomes in cancer immunotherapy. Indeed, cancer cells are characterized by several intrinsic mechanisms to resist apoptosis, in addition to features to promote apoptosis in T cells and evade therapy. However, apoptosis is double-faced: when it occurs in T cells, it represents a critical mechanism of failure for immunotherapies. This review will summarize the recent efforts to enhance T cell-based immunotherapies by increasing apoptosis susceptibility in cancer cells and discuss the role of apoptosis in modulating the survival of cytotoxic T lymphocytes in the tumor microenvironment and potential strategies to overcome this issue

    HSCT with Mismatched Unrelated Donors (MMUD): A Comparison of Different Platforms for GvHD Prophylaxis

    No full text
    HSCT from an unrelated HLA-mismatched donor (MMUD) is one of the alternatives where an HLA-matched donor is not found. The aim of this study was to compare GvHD prophylaxis with anti-thymocyte globulin (ATG) vs. post-transplant cyclophosphamide (PT-Cy). Thirty-nine adult patients were uniformly treated with rabbit ATG-Cy-A-MTX and peripheral blood stem cell (PBSC) and 40 adult patients with PT-Cy-MMF-tacrolimus and PBSC. This retrospective study was registered at ClinicalTrials.gov NCT04598789. Three-year overall survival was 42% vs. 64% for ATG and PT-Cy (p p = 0.0033) and the three-year relapse incidence (RI) was 15% vs. 28% (p = NS), respectively. The incidences of day-100 GvHD graded II–IV and III–IV were 39% vs. 7% (p = 0.0006) and 11% vs. 0% (p = 0.04), respectively, whereas the three-year cGvHD incidences were 48% vs. 13% (p = 0.0005), respectively. We were able to show how PT-Cy can reduce the incidence of GvHDs and TRM in adults, but relapse remains an issue

    CSPG4 CAR-redirected Cytokine Induced Killer lymphocytes (CIK) as effective cellular immunotherapy for HLA class I defective melanoma

    No full text
    Abstract Background Even acknowledging the game-changing results achieved in the treatment of metastatic melanoma with the use of immune checkpoint inhibitors (ICI), a large proportion of patients (40–60%) still fail to respond or relapse due to the development of resistance. Alterations in the expression of Human Leukocyte Antigen class I (HLA-I) molecules are considered to play a major role in clinical resistance to ICI. Cellular immunotherapy with HLA-independent CAR-redirected lymphocytes is a promising alternative in this challenging setting and dedicated translational models are needed. Methods In this study, we propose an HLA-independent therapeutic strategy with Cytokine Induced Killer lymphocytes (CIK) genetically engineered with a Chimeric Antigen Receptor (CAR) targeting the tumor antigen CSPG4 as effector mechanism. We investigated the preclinical antitumor activity of CSPG4-CAR.CIK in vitro and in a xenograft murine model focusing on patient-derived melanoma cell lines (Mel) with defective expression of HLA-I molecules. Results We successfully generated CSPG4-CAR.CIK from patients with metastatic melanoma and reported their intense activity in vitro against a panel of CSPG4-expressing patient-derived Mel. The melanoma killing activity was intense, even at very low effector to target ratios, and not influenced by the expression level (high, low, defective) of HLA-I molecules on target cells. Furthermore, CAR.CIK conditioned medium was capable of upregulating the expression of HLA-I molecules on melanoma cells. A comparable immunomodulatory effect was replicated by treatment of Mel cells with exogenous IFN-γ and IFN-α. The antimelanoma activity of CSPG4-CAR.CIK was successfully confirmed in vivo, obtaining a significant tumor growth inhibition of an HLA-defective Mel xenograft in immunodeficient mice. Conclusions In this study we reported the intense preclinical activity of CSPG4-CAR.CIK against melanoma, including those with low or defective HLA-I expression. Our findings support CSPG4 as a valuable CAR target in melanoma and provide translational rationale for clinical studies exploring CAR-CIK cellular immunotherapies within the challenging setting of patients not responsive or relapsing to immune checkpoint inhibitors

    Safety and efficacy of a novel anti-CD19 chimeric antigen receptor T cell product targeting a membrane-proximal domain of CD19 with fast on- and off-rates against non-Hodgkin lymphoma: a first-in-human study

    No full text
    Abstract Background Commercial anti-CD19 chimeric antigen receptor T-cell therapies (CART19) are efficacious against advanced B-cell non-Hodgkin lymphoma (NHL); however, most patients ultimately relapse. Several mechanisms contribute to this failure, including CD19-negative escape and CAR T dysfunction. All four commercial CART19 products utilize the FMC63 single-chain variable fragment (scFv) specific to a CD19 membrane-distal epitope and characterized by slow association (on) and dissociation (off) rates. We hypothesized that a novel anti-CD19 scFv that engages an alternative CD19 membrane-proximal epitope independent of FMC63 and that is characterized by faster on- and off-rates could mitigate CART19 failure and improve clinical efficacy. Methods We developed an autologous CART19 product with 4-1BB co-stimulation using a novel humanized chicken antibody (h1218). This antibody is specific to a membrane-proximal CD19 epitope and harbors faster on/off rates compared to FMC63. We tested h1218-CART19 in vitro and in vivo using FMC63-CART19-resistant models. We conducted a first-in-human multi-center phase I clinical trial to test AT101 (clinical-grade h1218-CART19) in patients with relapsed or refractory (r/r) NHL. Results Preclinically, h1218- but not FMC63-CART19 were able to effectively eradicate lymphomas expressing CD19 point mutations (L174V and R163L) or co-expressing FMC63-CAR19 as found in patients relapsing after FMC63-CART19. Furthermore, h1218-CART19 exhibited enhanced killing of B-cell malignancies in vitro and in vivo compared with FMC63-CART19. Mechanistically, we found that h1218-CART19 had reduced activation-induced cell death (AICD) and enhanced expansion compared to FMC63-CART19 owing to faster on- and off-rates. Based on these preclinical results, we performed a phase I dose-escalation trial, testing three dose levels (DL) of AT101 (the GMP version of h1218) using a 3 + 3 design. In 12 treated patients (7 DLBCL, 3 FL, 1 MCL, and 1 MZL), AT101 showed a promising safety profile with 8.3% grade 3 CRS (n = 1) and 8.3% grade 4 ICANS (n = 1). In the whole cohort, the overall response rate was 91.7%, with a complete response rate of 75.0%, which improved to 100% in DL-2 and -3. AT101 expansion correlates with CR and B-cell aplasia. Conclusions We developed a novel, safe, and potent CART19 product that recognizes a membrane-proximal domain of CD19 with fast on- and off-rates and showed significant efficacy and promising safety in patients with relapsed B-cell NHL. Trial registration NCT05338931; Date: 2022–04-01
    corecore