5,874 research outputs found
Orthogonal testing families and holomorphic extension from the sphere to the ball
Let denote the open unit ball in , and let . We prove that if is an
analytic function on the sphere that extends
holomorphically in each variable separately and along each complex line through
, then is the trace of a holomorphic function in the ball.Comment: 9 pages, 2 figures. Final version to appear in Math.
Fully Adaptive Gaussian Mixture Metropolis-Hastings Algorithm
Markov Chain Monte Carlo methods are widely used in signal processing and
communications for statistical inference and stochastic optimization. In this
work, we introduce an efficient adaptive Metropolis-Hastings algorithm to draw
samples from generic multi-modal and multi-dimensional target distributions.
The proposal density is a mixture of Gaussian densities with all parameters
(weights, mean vectors and covariance matrices) updated using all the
previously generated samples applying simple recursive rules. Numerical results
for the one and two-dimensional cases are provided
Two adaptive rejection sampling schemes for probability density functions log-convex tails
Monte Carlo methods are often necessary for the implementation of optimal
Bayesian estimators. A fundamental technique that can be used to generate
samples from virtually any target probability distribution is the so-called
rejection sampling method, which generates candidate samples from a proposal
distribution and then accepts them or not by testing the ratio of the target
and proposal densities. The class of adaptive rejection sampling (ARS)
algorithms is particularly interesting because they can achieve high acceptance
rates. However, the standard ARS method can only be used with log-concave
target densities. For this reason, many generalizations have been proposed.
In this work, we investigate two different adaptive schemes that can be used
to draw exactly from a large family of univariate probability density functions
(pdf's), not necessarily log-concave, possibly multimodal and with tails of
arbitrary concavity. These techniques are adaptive in the sense that every time
a candidate sample is rejected, the acceptance rate is improved. The two
proposed algorithms can work properly when the target pdf is multimodal, with
first and second derivatives analytically intractable, and when the tails are
log-convex in a infinite domain. Therefore, they can be applied in a number of
scenarios in which the other generalizations of the standard ARS fail. Two
illustrative numerical examples are shown
On the Ekeland-Hofer symplectic capacities of the real bidisc
In with the standard symplectic structure we consider the
bidisc constructed as the product of two open real discs of
radius . We compute explicit values for the first, second and third
Ekeland-Hofer symplectic capacity of . We discuss some
applications to questions of symplectic rigidity.Comment: v3: Final version, to appear in "Pacific J. Math.", 20 page
Improved Adaptive Rejection Metropolis Sampling Algorithms
Markov Chain Monte Carlo (MCMC) methods, such as the Metropolis-Hastings (MH)
algorithm, are widely used for Bayesian inference. One of the most important
issues for any MCMC method is the convergence of the Markov chain, which
depends crucially on a suitable choice of the proposal density. Adaptive
Rejection Metropolis Sampling (ARMS) is a well-known MH scheme that generates
samples from one-dimensional target densities making use of adaptive piecewise
proposals constructed using support points taken from rejected samples. In this
work we pinpoint a crucial drawback in the adaptive procedure in ARMS: support
points might never be added inside regions where the proposal is below the
target. When this happens in many regions it leads to a poor performance of
ARMS, with the proposal never converging to the target. In order to overcome
this limitation we propose two improved adaptive schemes for constructing the
proposal. The first one is a direct modification of the ARMS procedure that
incorporates support points inside regions where the proposal is below the
target, while satisfying the diminishing adaptation property, one of the
required conditions to assure the convergence of the Markov chain. The second
one is an adaptive independent MH algorithm with the ability to learn from all
previous samples except for the current state of the chain, thus also
guaranteeing the convergence to the invariant density. These two new schemes
improve the adaptive strategy of ARMS, thus simplifying the complexity in the
construction of the proposals. Numerical results show that the new techniques
provide better performance w.r.t. the standard ARMS.Comment: Matlab code provided in http://a2rms.sourceforge.net
An extension theorem for regular functions of two quaternionic variables
For functions of two quaternionic variables that are regular in the sense of
Fueter, we establish a result similar in spirit to the Hanges and Tr\`eves
theorem. Namely, we show that a ball contained in the boundary of a domain is a
propagator of regular extendability across the boundary.Comment: v3: Final version, to appear in "Journal of Mathematical Analysis and
Applications", 10 pages, 1 figur
Rethinking the Effective Sample Size
The effective sample size (ESS) is widely used in sample-based simulation
methods for assessing the quality of a Monte Carlo approximation of a given
distribution and of related integrals. In this paper, we revisit and complete
the approximation of the ESS in the specific context of importance sampling
(IS). The derivation of this approximation, that we will denote as
, is only partially available in Kong [1992]. This
approximation has been widely used in the last 25 years due to its simplicity
as a practical rule of thumb in a wide variety of importance sampling methods.
However, we show that the multiple assumptions and approximations in the
derivation of , makes it difficult to be considered even
as a reasonable approximation of the ESS. We extend the discussion of the ESS
in the multiple importance sampling (MIS) setting, and we display numerical
examples. This paper does not cover the use of ESS for MCMC algorithms
- …