318 research outputs found

    Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes

    Get PDF
    Exploiting the theory of state space models, we derive the exact expressions of the information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction information decomposition and partial information decomposition, can thus be analytically obtained for different time scales from the parameters of the VAR model that fits the processes. We report the application of the proposed methodology firstly to benchmark Gaussian systems, showing that this class of systems may generate patterns of information decomposition characterized by mainly redundant or synergistic information transfer persisting across multiple time scales or even by the alternating prevalence of redundant and synergistic source interaction depending on the time scale. Then, we apply our method to an important topic in neuroscience, i.e., the detection of causal interactions in human epilepsy networks, for which we show the relevance of partial information decomposition to the detection of multiscale information transfer spreading from the seizure onset zone

    On the interpretability and computational reliability of frequency-domain Granger causality

    Get PDF
    This is a comment to the paper 'A study of problems encountered in Granger causality analysis from a neuroscience perspective'. We agree that interpretation issues of Granger Causality in Neuroscience exist (partially due to the historical unfortunate use of the name 'causality', as nicely described in previous literature). On the other hand we think that the paper uses a formulation of Granger causality which is outdated (albeit still used), and in doing so it dismisses the measure based on a suboptimal use of it. Furthermore, since data from simulated systems are used, the pitfalls that are found with the used formulation are intended to be general, and not limited to neuroscience. It would be a pity if this paper, even written in good faith, became a wildcard against all possible applications of Granger Causality, regardless of the hard work of colleagues aiming to seriously address the methodological and interpretation pitfalls. In order to provide a balanced view, we replicated their simulations used the updated State Space implementation, proposed already some years ago, in which the pitfalls are mitigated or directly solved

    Multiscale Granger causality analysis by \`a trous wavelet transform

    Full text link
    Since interactions in neural systems occur across multiple temporal scales, it is likely that information flow will exhibit a multiscale structure, thus requiring a multiscale generalization of classical temporal precedence causality analysis like Granger's approach. However, the computation of multiscale measures of information dynamics is complicated by theoretical and practical issues such as filtering and undersampling: to overcome these problems, we propose a wavelet-based approach for multiscale Granger causality (GC) analysis, which is characterized by the following properties: (i) only the candidate driver variable is wavelet transformed (ii) the decomposition is performed using the \`a trous wavelet transform with cubic B-spline filter. We measure GC, at a given scale, by including the wavelet coefficients of the driver times series, at that scale, in the regression model of the target. To validate our method, we apply it to publicly available scalp EEG signals, and we find that the condition of closed eyes, at rest, is characterized by an enhanced GC among channels at slow scales w.r.t. eye open condition, whilst the standard Granger causality is not significantly different in the two conditions.Comment: 4 pages, 3 figure

    Multiscale Granger causality

    Get PDF
    In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well-established, multiscale analysis of directed interactions has never been formalized theoretically, and empirical evaluations are complicated by practical issues such as filtering and downsampling. Here we extend the very popular measure of Granger causality (GC), a prominent tool for assessing directed lagged interactions between joint processes, to quantify information transfer across multiple time scales. We show that the multiscale processing of a vector autoregressive (AR) process introduces a moving average (MA) component, and describe how to represent the resulting ARMA process using state space (SS) models and to combine the SS model parameters for computing exact GC values at arbitrarily large time scales. We exploit the theoretical formulation to identify peculiar features of multiscale GC in basic AR processes, and demonstrate with numerical simulations the much larger estimation accuracy of the SS approach compared with pure AR modeling of filtered and downsampled data. The improved computational reliability is exploited to disclose meaningful multiscale patterns of information transfer between global temperature and carbon dioxide concentration time series, both in paleoclimate and in recent years

    Multivariate Frequency Domain Analysis of Causal Interactions in Physiological Time Series

    Get PDF
    The mission of this chapter is to enhance the theoretical interpretability of the available frequency domain measures of coupling and causality derived from the MVAR representation of multiple time series

    Multiscale Analysis of Information Dynamics for Linear Multivariate Processes

    Full text link
    In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using state-space (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale information dynamics for simulated unidirectionally and bidirectionally coupled VAR processes, showing that rescaling may lead to insightful patterns of information storage and transfer but also to potentially misleading behaviors

    Information decomposition of multichannel EMG to map functional interactions in the distributed motor system

    Get PDF
    The central nervous system needs to coordinate multiple muscles during postural control. Functional coordination is established through the neural circuitry that interconnects different muscles. Here we used multivariate information decomposition of multichannel EMG acquired from 14 healthy participants during postural tasks to investigate the neural interactions between muscles. A set of information measures were estimated from an instantaneous linear regression model and a time-lagged VAR model fitted to the EMG envelopes of 36 muscles. We used network analysis to quantify the structure of functional interactions between muscles and compared them across experimental conditions. Conditional mutual information and transfer entropy revealed sparse networks dominated by local connections between muscles. We observed significant changes in muscle networks across postural tasks localized to the muscles involved in performing those tasks. Information decomposition revealed distinct patterns in task-related changes: unimanual and bimanual pointing were associated with reduced transfer to the pectoralis major muscles, but an increase in total information compared to no pointing, while postural instability resulted in increased information, information transfer and information storage in the abductor longus muscles compared to normal stability. These findings show robust patterns of directed interactions between muscles that are task-dependent and can be assessed from surface EMG recorded during static postural tasks. We discuss directed muscle networks in terms of the neural circuitry involved in generating muscle activity and suggest that task-related effects may reflect gain modulations of spinal reflex pathways

    Neural Networks with Non-Uniform Embedding and Explicit Validation Phase to Assess Granger Causality

    Get PDF
    A challenging problem when studying a dynamical system is to find the interdependencies among its individual components. Several algorithms have been proposed to detect directed dynamical influences between time series. Two of the most used approaches are a model-free one (transfer entropy) and a model-based one (Granger causality). Several pitfalls are related to the presence or absence of assumptions in modeling the relevant features of the data. We tried to overcome those pitfalls using a neural network approach in which a model is built without any a priori assumptions. In this sense this method can be seen as a bridge between model-free and model-based approaches. The experiments performed will show that the method presented in this work can detect the correct dynamical information flows occurring in a system of time series. Additionally we adopt a non-uniform embedding framework according to which only the past states that actually help the prediction are entered into the model, improving the prediction and avoiding the risk of overfitting. This method also leads to a further improvement with respect to traditional Granger causality approaches when redundant variables (i.e. variables sharing the same information about the future of the system) are involved. Neural networks are also able to recognize dynamics in data sets completely different from the ones used during the training phase

    Inferring directionality of coupled dynamical systems using Gaussian process priors: Application on neurovascular systems

    Get PDF
    Dynamical system theory has recently shown promise for uncovering causality and directionality in complex systems, particularly using the method of convergent cross mapping (CCM). In spite of its success in the literature, the presence of process noise raises concern about CCM’s ability to uncover coupling direction. Furthermore, CCM’s capacity to detect indirect causal links may be challenged in simulated unidrectionally coupled Rossler-Lorenz systems. To overcome these limitations, we propose a method that places a Gaussian process prior on a cross mapping function (named GP-CCM) to impose constraints on local state space neighborhood comparisons. Bayesian posterior likelihood and evidence ratio tests, as well as surrogate data analyses are performed to obtain a robust statistic for dynamical coupling directionality. We demonstrate GP-CCM’s performance with respect to CCM in synthetic data simulation as well as in empirical electroencephelography (EEG) and functional near infrared spectroscopy (fNIRS) activity data. Our findings show that GP-CCM provides a statistic that consistently reports indirect causal structures in non-separable unidirectional system interactions; GP-CCM also provides coupling direction estimates in noisy physiological signals, showing that EEG likely causes, i.e., drives, fNIRS dynamics

    Testing different methodologies for Granger causality estimation: A simulation study

    Get PDF
    Granger causality (GC) is a method for determining whether and how two time series exert causal influences one over the other. As it is easy to implement through vector autoregressive (VAR) models and can be generalized to the multivariate case, GC has spread in many different areas of research such as neuroscience and network physiology. In its basic formulation, the computation of GC involves two different regressions, taking respectively into account the whole past history of the investigated multivariate time series (full model) and the past of all time series except the putatively causal time series (restricted model). However, the restricted model cannot be represented through a finite order VAR process and, when few data samples are available or the number of time series is very high, the estimation of GC exhibits a strong reduction in accuracy. To mitigate these problems, improved estimation strategies have been recently implemented, including state space (SS) models and partial conditioning (PC) approaches. In this work, we propose a new method to compute GC which combines SS and PC and tests it together with other four commonly used estimation approaches. In simulated networks of linearly interacting time series, we show the possibility to reconstruct the network structure even in challenging conditions of data samples available
    • …
    corecore