26 research outputs found
Investigating the utility of combining Φ29 whole genome amplification and highly multiplexed single nucleotide polymorphism BeadArray™ genotyping
BACKGROUND: Sustainable DNA resources and reliable high-throughput genotyping methods are required for large-scale, long-term genetic association studies. In the genetic dissection of common disease it is now recognised that thousands of samples and hundreds of thousands of markers, mostly single nucleotide polymorphisms (SNPs), will have to be analysed. In order to achieve these aims, both an ability to boost quantities of archived DNA and to genotype at low costs are highly desirable. We have investigated Φ29 polymerase Multiple Displacement Amplification (MDA)-generated DNA product (MDA product), in combination with highly multiplexed BeadArray™ genotyping technology. As part of a large-scale BeadArray genotyping experiment we made a direct comparison of genotyping data generated from MDA product with that from genomic DNA (gDNA) templates. RESULTS: Eighty-six MDA product and the corresponding 86 gDNA samples were genotyped at 345 SNPs and a concordance rate of 98.8% was achieved. The BeadArray sample exclusion rate, blind to sample type, was 10.5% for MDA product compared to 5.8% for gDNA. CONCLUSIONS: We conclude that the BeadArray technology successfully produces high quality genotyping data from MDA product. The combination of these technologies improves the feasibility and efficiency of mapping common disease susceptibility genes despite limited stocks of gDNA samples
Recommended from our members
Discovery, linkage disequilibrium and association analyses of polymorphisms of the immune complement inhibitor, decay-accelerating factor gene (DAF/CD55) in type 1 diabetes.
BACKGROUND: Type 1 diabetes (T1D) is a common autoimmune disease resulting from T-cell mediated destruction of pancreatic beta cells. Decay accelerating factor (DAF, CD55), a glycosylphosphatidylinositol-anchored membrane protein, is a candidate for autoimmune disease susceptibility based on its role in restricting complement activation and evidence that DAF expression modulates the phenotype of mice models for autoimmune disease. In this study, we adopt a linkage disequilibrium (LD) mapping approach to test for an association between the DAF gene and T1D. RESULTS: Initially, we used HapMap II genotype data to examine LD across the DAF region. Additional resequencing was required, identifying 16 novel polymorphisms. Combining both datasets, a LD mapping approach was adopted to test for association with T1D. Seven tag SNPs were selected and genotyped in case-control (3,523 cases and 3,817 controls) and family (725 families) collections. CONCLUSION: We obtained no evidence of association between T1D and the DAF region in two independent collections. In addition, we assessed the impact of using only HapMap II genotypes for the selection of tag SNPs and, based on this study, found that HapMap II genotypes may require additional SNP discovery for comprehensive LD mapping of some genes in common disease.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Recommended from our members
Development of an integrated genome informatics, data management and workflow infrastructure: a toolbox for the study of complex disease genetics.
The genetic dissection of complex disease remains a significant challenge. Sample-tracking and the recording, processing and storage of high-throughput laboratory data with public domain data, require integration of databases, genome informatics and genetic analyses in an easily updated and scaleable format. To find genes involved in multifactorial diseases such as type 1 diabetes (T1D), chromosome regions are defined based on functional candidate gene content, linkage information from humans and animal model mapping information. For each region, genomic information is extracted from Ensembl, converted and loaded into ACeDB for manual gene annotation. Homology information is examined using ACeDB tools and the gene structure verified. Manually curated genes are extracted from ACeDB and read into the feature database, which holds relevant local genomic feature data and an audit trail of laboratory investigations. Public domain information, manually curated genes, polymorphisms, primers, linkage and association analyses, with links to our genotyping database, are shown in Gbrowse. This system scales to include genetic, statistical, quality control (QC) and biological data such as expression analyses of RNA or protein, all linked from a genomics integrative display. Our system is applicable to any genetic study of complex disease, of either large or small scale.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
T1DBase: integration and presentation of complex data for type 1 diabetes research
T1DBase () [Smink et al. (2005) Nucleic Acids Res., 33, D544–D549; Burren et al. (2004) Hum. Genomics, 1, 98–109] is a public website and database that supports the type 1 diabetes (T1D) research community. T1DBase provides a consolidated T1D-oriented view of the complex data world that now confronts medical researchers and enables scientists to navigate from information they know to information that is new to them. Overview pages for genes and markers summarize information for these elements. The Gene Dossier summarizes information for a list of genes. GBrowse [Stein et al. (2002) Genome Res., 10, 1599–1610] displays genes and other features in their genomic context, and Cytoscape [Shannon et al. (2003) Genome Res., 13, 2498–2504] shows genes in the context of interacting proteins and genes. The Beta Cell Gene Atlas shows gene expression in β cells, islets, and related cell types and lines, and the Tissue Expression Viewer shows expression across other tissues. The Microarray Viewer shows expression from more than 20 array experiments. The Beta Cell Gene Expression Bank contains manually curated gene and pathway annotations for genes expressed in β cells. T1DMart is a query tool for markers and genotypes. PosterPages are ‘home pages’ about specific topics or datasets. The key challenge, now and in the future, is to provide powerful informatics capabilities to T1D scientists in a form they can use to enhance their research
Recommended from our members
Construction and analysis of tag single nucleotide polymorphism maps for six human-mouse orthologous candidate genes in type 1 diabetes.
BACKGROUND: One strategy to help identify susceptibility genes for complex, multifactorial diseases is to map disease loci in a representative animal model of the disorder. The nonobese diabetic (NOD) mouse is a model for human type 1 diabetes. Linkage and congenic strain analyses have identified several NOD mouse Idd (insulin dependent diabetes) loci, which have been mapped to small chromosome intervals, for which the orthologous regions in the human genome can be identified. Here, we have conducted re-sequencing and association analysis of six orthologous genes identified in NOD Idd loci: NRAMP1/SLC11A1 (orthologous to Nramp1/Slc11a1 in Idd5.2), FRAP1 (orthologous to Frap1 in Idd9.2), 4-1BB/CD137/TNFRSF9 (orthologous to 4-1bb/Cd137/Tnrfrsf9 in Idd9.3), CD101/IGSF2 (orthologous to Cd101/Igsf2 in Idd10), B2M (orthologous to B2m in Idd13) and VAV3 (orthologous to Vav3 in Idd18). RESULTS: Re-sequencing of a total of 110 kb of DNA from 32 or 96 type 1 diabetes cases yielded 220 single nucleotide polymorphisms (SNPs). Sixty-five SNPs, including 54 informative tag SNPs, and a microsatellite were selected and genotyped in up to 1,632 type 1 diabetes families and 1,709 cases and 1,829 controls. CONCLUSION: None of the candidate regions showed evidence of association with type 1 diabetes (P values > 0.2), indicating that common variation in these key candidate genes does not play a major role in type 1 diabetes susceptibility in the European ancestry populations studied.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Recommended from our members
Discovery, linkage disequilibrium and association analyses of polymorphisms of the immune complement inhibitor, decay-accelerating factor gene (DAF/CD55) in type 1 diabetes.
BACKGROUND: Type 1 diabetes (T1D) is a common autoimmune disease resulting from T-cell mediated destruction of pancreatic beta cells. Decay accelerating factor (DAF, CD55), a glycosylphosphatidylinositol-anchored membrane protein, is a candidate for autoimmune disease susceptibility based on its role in restricting complement activation and evidence that DAF expression modulates the phenotype of mice models for autoimmune disease. In this study, we adopt a linkage disequilibrium (LD) mapping approach to test for an association between the DAF gene and T1D. RESULTS: Initially, we used HapMap II genotype data to examine LD across the DAF region. Additional resequencing was required, identifying 16 novel polymorphisms. Combining both datasets, a LD mapping approach was adopted to test for association with T1D. Seven tag SNPs were selected and genotyped in case-control (3,523 cases and 3,817 controls) and family (725 families) collections. CONCLUSION: We obtained no evidence of association between T1D and the DAF region in two independent collections. In addition, we assessed the impact of using only HapMap II genotypes for the selection of tag SNPs and, based on this study, found that HapMap II genotypes may require additional SNP discovery for comprehensive LD mapping of some genes in common disease.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are