1,048 research outputs found
Golabi-Ito-Hall syndrome results from a missense mutation in the WW domain of the PQBP1 gene
Background: Golabi, Ito, and Hall reported a family with X linked mental retardation (XLMR), microcephaly, postnatal growth deficiency, and other anomalies, including atrial septal defect, in 1984.Methods: This family was restudied as part of our ongoing study of XLMR, but significant linkage to X chromosome markers could not be found. Extreme short stature and microcephaly as well as other new clinical findings were observed. Mutations in the polyglutamine tract binding protein 1 gene (PQBP1) have recently been reported in four XLMR disorders (Renpenning, Hamel cerebro-palato-cardiac, Sutherland-Haan, and Porteous syndromes) as well as in several other families. The clinical similarity of our family to these patients with mutations in PQBP1, particularly the presence of microcephaly, short stature, and atrial septal defect, prompted examination of this gene.Results: A missense mutation in PQBP1 was identified which changed the conserved tyrosine residue in the WW domain at position 65 to a cysteine (p.Y65C).Conclusions: This is the first missense mutation identified in PQBP1 and the first mutation in the WW domain of the gene. The WW domain has been shown to play an important role in the regulation of transcription by interacting with the PPxY motif found in transcription factors. The p.Y65C mutation may affect the proper functioning of the PQBP1 protein as a transcriptional co-activator
Toward Fulfilling the Promise of Molecular Medicine in Fragile X
Fragile X syndrome (FXS) is the most common inherited form of mental retardation and a leading known cause of autism. It is caused by loss of expression of the fragile X mental retardation protein (FMRP), an RNA-binding protein that negatively regulates protein synthesis. In neurons, multiple lines of evidence suggest that protein synthesis at synapses is triggered by activation of group 1 metabotropic glutamate receptors (Gp1 mGluRs) and that many functional consequences of activating these receptors are altered in the absence of FMRP. These observations have led to the theory that exaggerated protein synthesis downstream of Gp1 mGluRs is a core pathogenic mechanism in FXS. This excess can be corrected by reducing signaling by Gp1 mGluRs, and numerous studies have shown that inhibition of mGluR5, in particular, can ameliorate multiple mutant phenotypes in animal models of FXS. Clinical trials based on this therapeutic strategy are currently under way. FXS is therefore poised to be the first neurobehavioral disorder in which corrective treatments have been developed from the bottom up: from gene identification to pathophysiology in animals to novel therapeutics in humans. The insights gained from FXS and other autism-related single-gene disorders may also assist in identifying molecular mechanisms and potential treatment approaches for idiopathic autism.Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.)National Institute of Mental Health (U.S.)FRAXA Research Foundatio
- …
