1 research outputs found

    The Effect of Different Thawing Rates on Cryopreserved Human Iliac Arteries Allograft’s Structural Damage and Mechanical Properties

    No full text
    Introduction. The rate of thawing of cryopreserved human iliac arteries allografts (CHIAA) directly affects the severeness of structural changes that occur during this process. Method. The experiment was performed on ten CHIAA. The 10% dimethylsulphoxide in 6% hydroxyethyl starch solution was used as the cryoprotectant; all CHIAA were cooled at a controlled rate and stored in the vapor phase of liquid nitrogen (-194°C). Two thawing protocols were tested: (1) placing the CHIAA in a water bath at 37°C, and (2) the CHIAA were thawed in a controlled environment at 5°C. All samples underwent analysis under a scanning electron microscope. Testing of the mechanical properties of the CHIAA was evaluated on a custom-built single axis strain testing machine. Longitudinal and circumferential samples were prepared from each tested CHIAA. Results. Ultrastructural analysis revealed that all five CHIAA thawed during the thawing protocol 1 which showed significantly more damage to the subendothelial structures when compared to the samples thawed in protocol 2. Mechanical properties: Thawing protocol 1—longitudinal UTS 2,53±0,47 MPa at relative strain 1,27±0,12 and circumferential UTS 1,94±0,27 MPa at relative strain 1,33±0,09. Thawing protocol 2—longitudinal ultimate tensile strain (UTS) 2,42±0,34 MPa at relative strain 1,32±0,09 and circumferential UTS 1,98±0,26 MPa at relative strain 1,29±0,07. Comparing UTS showed no statistical difference between thawing methods. Conclusion. Despite the significant differences in structural changes of presented thawing protocols, the ultimate tensile strain showed no statistical difference between thawing methods
    corecore