19 research outputs found
Advanced grasping with the Pisa/IIT softHand
This chapter presents the hardware, software and overall strategy used by the team UNIPI-IIT-QB to participate to the Robotic Grasping and Manipulation Competition. It relies on the PISA/IIT SoftHand, which is underactuated soft robotic hand that can adapt to the grasped object shape and is compliant with the environment. It was used for the hand-in-hand and for the simulation tracks, where the team reached first and third places respectively
Colorectal Cancer Stage at Diagnosis Before vs During the COVID-19 Pandemic in Italy
IMPORTANCE Delays in screening programs and the reluctance of patients to seek medical
attention because of the outbreak of SARS-CoV-2 could be associated with the risk of more advanced
colorectal cancers at diagnosis.
OBJECTIVE To evaluate whether the SARS-CoV-2 pandemic was associated with more advanced
oncologic stage and change in clinical presentation for patients with colorectal cancer.
DESIGN, SETTING, AND PARTICIPANTS This retrospective, multicenter cohort study included all
17 938 adult patients who underwent surgery for colorectal cancer from March 1, 2020, to December
31, 2021 (pandemic period), and from January 1, 2018, to February 29, 2020 (prepandemic period),
in 81 participating centers in Italy, including tertiary centers and community hospitals. Follow-up was
30 days from surgery.
EXPOSURES Any type of surgical procedure for colorectal cancer, including explorative surgery,
palliative procedures, and atypical or segmental resections.
MAIN OUTCOMES AND MEASURES The primary outcome was advanced stage of colorectal cancer
at diagnosis. Secondary outcomes were distant metastasis, T4 stage, aggressive biology (defined as
cancer with at least 1 of the following characteristics: signet ring cells, mucinous tumor, budding,
lymphovascular invasion, perineural invasion, and lymphangitis), stenotic lesion, emergency surgery,
and palliative surgery. The independent association between the pandemic period and the outcomes
was assessed using multivariate random-effects logistic regression, with hospital as the cluster
variable.
RESULTS A total of 17 938 patients (10 007 men [55.8%]; mean [SD] age, 70.6 [12.2] years)
underwent surgery for colorectal cancer: 7796 (43.5%) during the pandemic period and 10 142
(56.5%) during the prepandemic period. Logistic regression indicated that the pandemic period was
significantly associated with an increased rate of advanced-stage colorectal cancer (odds ratio [OR],
1.07; 95%CI, 1.01-1.13; P = .03), aggressive biology (OR, 1.32; 95%CI, 1.15-1.53; P < .001), and stenotic
lesions (OR, 1.15; 95%CI, 1.01-1.31; P = .03).
CONCLUSIONS AND RELEVANCE This cohort study suggests a significant association between the
SARS-CoV-2 pandemic and the risk of a more advanced oncologic stage at diagnosis among patients
undergoing surgery for colorectal cancer and might indicate a potential reduction of survival for
these patients
Analysis and development of an integrated system of visual-tactile object exploration
Sviluppo integrato di un sistema hardware e software per il problema di presa di un oggetto posto davanti al robot (Kuka). Il progetto di tesi prevede l'implementazione di un algoritmo definito "quasiNewton" per posizionare la soft-hand (end-effector del kuka) in una posizione tale da garantire la presa dell'oggetto. Gli strumenti utilizzati sono stati una telecamera RGB+D asus, sensori IR e sensori inerziali (IMU). Il tutto è stato implementato grazie all'utilizzo di ambienti simulativi ROS - GAZEBO - RVIZ. Per la scrittura del codice sono stati usati i linguaggi di programmazione C++ e HTML
Low-Cost and Accurate Reconstruction of Postures via IMU
In this chapter, we present an approach to reconstruct the pose of serial kinematic chain that aims
at reconciling the two previously described, and could be defined as an intermediate way of tackling
the problem, see Figure 30.1c. Inspired by (b), we apply to each link of the chain with an inertial
measurement unit (IMU), thus estimating its orientation via a quaternion. Then considering the
relative orientation of a link with respect another one, and knowing the geometry and the topology
of the joint between two links, we are able to compute the joint angles value
Low-cost, fast and accurate reconstruction of robotic and human postures via IMU measurements
In this paper, we present a method to reconstruct the configurations of kinematic trees of rigid bodies not using measurements of relative angles (such as, e.g. rotary encoders at joints) but absolute posture sensors (such as IMUs) along with suitable filter algorithms. We argue that the relatively larger inaccuracies shown by absolute sensors can be compensated by suitable processing, such as a passive complementary filters exploiting the Mahony-Hamel formulation. The proposed method is applicable to systems where measurements of relative angles is not feasible or convenient, or where the joint kinematics are not lower pairs: for example, human body parts or soft robotic devices. In the paper, we make explicit reference to the reconstruction of posture of the compliant, underactuated Pisa/IIT SoftHand. Quantitative comparisons with ground truth data in grasping tests are used to validate the proposed method. The resulting hardware design is mechanically robust, cheap and can be easily adapted to robotic hands with different structures, as well as to sensorizing gloves for studying human grasping strategies
Combination therapy with anti-ErbB3 monoclonal antibodies and EGFR TKIs potently inhibits Non-small Cell Lung Cancer
Personalized therapy of advanced non-small cell lung cancer (NSCLC) has been improved by the introduction of EGFR tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib. EGFR TKIs induce dramatic objective responses and increase survival in patients bearing sensitizing mutations in the EGFR intracytoplasmic tyrosine kinase domain. However, virtually all patients develop resistance, and this is responsible for disease relapse. Hence several efforts are being undertaken to understand the mechanisms of resistance in order to develop combination treatments capable to sensitize resistant cells to EGFR TKIs. Recent studies have suggested that upregulation of another member of the EGFR receptor family, namely ErbB3 is involved in drug resistance, through increased phosphorylation of its intracytoplasmic domain and activation of PI3K/AKT signaling. In this paper we first show, by using a set of malignant pleural effusion derived cell cultures (MPEDCC) from patients with lung adenocarcinoma, that surface ErbB3 expression correlates with increased AKT phosphorylation. Antibodies against ErbB3, namely A3, which we previously demonstrated to induce receptor internalization and degradation, inhibit growth and induce apoptosis only in cells overexpressing surface ErbB3. Furthermore, combination of anti-ErbB3 antibodies with EGFR TKIs synergistically affect cell proliferation in vitro, cause cell cycle arrest, up-regulate p21 expression and inhibit tumor growth in mouse xenografts. Importantly, potentiation of gefitinib by anti-ErbB3 antibodies occurs both in de novo and in ab initio resistant cells. Anti-ErbB3 mAbs strongly synergize also with the dual EGFR and HER2 inhibitor lapatinib. Our results suggest that combination treatment with EGFR TKI and antibodies against ErbB3 should be a promising approach to pursue in the clinic
Humanoids at Work: The WALK-MAN Robot in a Postearthquake Scenario
Today, human intervention is the only effective course of action after a natural or artificial disaster. This is true both for relief operations, where search and rescue of survivors is the priority, and for subsequent activities, such as those devoted to building assessment. In these contexts, the use of robotic systems would be beneficial to drastically reduce operators? risk exposure. However, the readiness level of robots still prevents their effective exploitation in relief operations, which are highly critical and characterized by severe time constraints. On the contrary, current robotic technologies can be profitably applied in procedures like building assessment after an earthquake. To date, these operations are carried out by engineers and architects who inspect numerous buildings over a large territory, with a high cost in terms of time and resources, and with a high risk due to aftershocks. The main idea is to have the robot acting as an alter ego of the human operator, who, thanks to a virtual-reality device and a body-tracking system based on inertial sensors, teleoperates the robot