17 research outputs found

    The Ecology of a Keystone Seed Disperser, the Ant Rhytidoponera violacea

    Get PDF
    Rhytidoponera violacea (Forel) (Hymenoptera: Formicidae) is a keystone seed disperser in Kwongan heathl and habitats of southwestern Australia. Like many myrmecochorous ants, little is known about the basic biology of this species. In this study various aspects of the biology of R. violacea were examined and the researchers evaluated how these characteristics may influence seed dispersal. R. violacea nesting habits (relatively shallow nests), foraging behavior (scramble competitor and lax food selection criteria), and other life history characteristics complement their role as a mutualist that interacts with the seeds of many plant species

    Impact of Forest Seral Stage on use of Ant Communities for Rapid Assessment of Terrestrial Ecosystem Health

    Get PDF
    Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests

    The ecology of a keystone seed disperser, the ant \u3cem\u3eRhytidoponera violacea\u3c/em\u3e

    Get PDF
    Rhytidoponera violacea (Forel) (Hymenoptera: Formicidae) is a keystone seed disperser in Kwongan heathland habitats of southwestern Australia. Like many myrmecochorous ants, little is known about the basic biology of this species. In this study various aspects of the biology of R. violacea were examined and the researchers evaluated how these characteristics may influence seed dispersal. R. violacea nesting habits (relatively shallow nests), foraging behavior (scramble competitor and lax food selection criteria), and other life history characteristics complement their role as a mutualist that interacts with the seeds of many plant species

    Interactions between seed‐dispersing ant species affect plant community composition in field mesocosms

    No full text
    This is the peer reviewed version of the following article: Prior, K. M., Meadley‐Dunphy, S. A., & Frederickson, M. E. (2020). Interactions between seed‐dispersing ant species affect plant community composition in field mesocosms. Journal of Animal Ecology, 89(11), 2485-2495. which has been published in final form at https://doi.org/10.1111/1365-2656.13310. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.In generalized mutualisms, species vary in the quality of services they provide to their partners directly via traits that affect partner fitness and indirectly via traits that influence interactions among mutualist species that play similar functional roles. Myrmecochory, or seed dispersal by ants, is a generalized mutualism with ant species varying in the quality of dispersal services they provide to their plant partners. Variation in ant species identity can directly impact seed dispersal patterns and plant community composition; however, we know less about how interactions among seed-dispersing ant species indirectly influence plant partners. The invasive ant Myrmica rubra, is a high-quality seed-disperser in its native range that interacts with myrmecochores (ant-dispersed plants) and the high-quality seed disperser Aphaenogaster sp. in its invaded range. We use this system to examine how interactions between two functionally similar mutualist ant species influence the recruitment and community composition of ant-dispersed plants. We performed a field mesocosm experiment and a laboratory behavioural experiment to compare discovery and dominance behaviours between ant species, and seed dispersal and seedling recruitment of four myrmecochore species among intraspecific interaction treatments of each ant species and an interspecific interaction treatment. We found that M. rubra was better at discovering and dispersing seeds, but Aphaenogaster sp. was dominantly aggressive over M. rubra. Interspecific interactions dampened seed dispersal relative to dispersal by the better disperser. Despite this dampening, we found no effect of interspecific interactions on seedling recruitment. However, community composition of seedlings in the interspecific interaction treatment was more similar to composition in the aggressively dominant ant (Aphaenogaster sp.) treatment than in the better discoverer ant M. rubra treatment. We show that interspecific interactions between mutualist species in the same functional guild affect the outcome of mutualistic interactions with partner species. Despite the native ant dispersing fewer seeds, its dominance over the subordinate (invasive) ant has the potential to allow for some level of biotic resistance against the effects of M. rubra on plant communities when these species coexist.Funding was provided by an NSERC Undergraduate Student Research Award (S.A.M.-D.), an NSERC Canada Graduate Scholarship (S.A.M.-D.), an EEB Postdoctoral Fellowship from the University of Toronto (K.M.P.), the Ontario Ministry of Economic Development and Innovation (K.M.P. and M.E.F.) and an NSERC Discovery Grant (M.E.F.)
    corecore