75 research outputs found

    Coagulopathy in newborns with hypoxic ischemic encephalopathy (HIE) treated with therapeutic hypothermia: A retrospective case-control study

    Get PDF
    Background Newborns with hypoxic ischemic encephalopathy (HIE) are at risk for coagulopathy due to systemic oxygen deprivation. Additionally, therapeutic hypothermia (TH) slows enzymatic activity of the coagulation cascade, leading to constitutive prolongation of routinely assessed coagulation studies. The level of laboratory abnormality that predicts bleeding is unclear, leading to varying transfusion therapy practices. Methods HIE infants treated with TH between 2008–2012 were included in this retrospective study. Initial, minimum (min) and maximum (max) values of International Normalized Ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen (Fib) and platelet (PLT) count (measured twice daily during TH) were collected. Bleeding was defined as clinically significant if associated with 1) decreased hemoglobin (Hb) by 2 g/dL in 24 hours, 2) transfusion of blood products for hemostasis, or 3) involvement of a critical organ system. Laboratory data between the bleeding group (BG) and non-bleeding group (NBG) were compared. Variables that differed significantly between groups were evaluated with Receiver Operating Characteristic Curve (ROC) analyses to determine cut-points to predict bleeding. Results Laboratory and bleeding data were collected from a total of 76 HIE infants with a mean (±SD) birthweight of 3.34 ± 0.67 kg and gestational age of 38.6 ± 1.9 wks. BG included 41 infants. Bleeding sites were intracranial (n = 13), gastrointestinal (n = 19), pulmonary (n = 18), hematuria (n = 11) or other (n = 1). There were no differences between BG and NBG in baseline characteristics (p \u3e 0.05). Both groups demonstrated INR and aPTT values beyond the acceptable reference ranges utilized for full tem newborns. BG had higher initial and max INR, initial aPTT, and lower min PLT and min Fib compared to NBG. ROC analyses revealed that platelet count \u3c130 \u3e× 109/L, fib level2 discriminated BG from NBG. Conclusions Laboratory evidence of coagulopathy is universal in HIE babies undergoing TH. Transfusion strategies to maintain PLT counts \u3e130 × 109/L, fib level \u3e1.5 g/L, and INRpopulation

    Examination of Reticulocytosis among Chronically Transfused Children with Sickle Cell Anemia.

    Get PDF
    Sickle cell anemia (SCA) is an inherited hemolytic anemia with compensatory reticulocytosis. Recent studies have shown that increased levels of reticulocytosis during infancy are associated with increased hospitalizations for SCA sequelae as well as cerebrovascular pathologies. In this study, absolute reticulocyte counts (ARC) measured prior to transfusion were analysed among a cohort of 29 pediatric SCA patients receiving chronic transfusion therapy (CTT) for primary and secondary stroke prevention. A cross-sectional flow cytometric analysis of the reticulocyte phenotype was also performed. Mean duration of CTT was 3.1 ± 2.6 years. Fifteen subjects with magnetic resonance angiography (MRA) -vasculopathy had significantly higher mean ARC prior to initiating CTT compared to 14 subjects without MRA-vasculopathy (427.6 ± 109.0 K/μl vs. 324.8 ± 109.2 K/μl,

    Increased reticulocytosis during infancy is associated with increased hospitalizations in sickle cell anemia patients during the first three years of life

    Get PDF
    Objective Among older children with sickle cell anemia, leukocyte counts, hemoglobin, and reticulocytosis have previously been suggested as disease severity markers. Here we explored whether these blood parameters may be useful to predict early childhood disease severity when tested in early infancy, defined as postnatal ages 60–180 days. Study Design Data from fifty-nine subjects who were followed at Children’s National Medical Center’s Sickle Cell Program for at least three years was retrospectively analyzed. Comparisons were made between white blood cell counts, hemoglobin and reticulocyte levels measured at ages 60–180 days and the clinical course of sickle cell anemia during infancy and childhood. Results A majority of subjects had demonstrable anemia with increased reticulocytosis. Only increased absolute reticulocyte levels during early infancy were associated with a significant increase in hospitalization during the first three years of life. Higher absolute reticulocyte counts were also associated with a markedly shorter time to first hospitalizations and a four-fold higher cumulative frequency of clinical manifestations over the first three years of life. No significant increase in white blood cell counts was identified among the infant subjects. Conclusions These data suggest that during early infancy, increased reticulocytosis among asymptomatic SCA subjects is associated with increased severity of disease in childhood

    Examination of Reticulocytosis among Chronically Transfused Children with Sickle Cell Anemia.

    Get PDF
    Sickle cell anemia (SCA) is an inherited hemolytic anemia with compensatory reticulocytosis. Recent studies have shown that increased levels of reticulocytosis during infancy are associated with increased hospitalizations for SCA sequelae as well as cerebrovascular pathologies. In this study, absolute reticulocyte counts (ARC) measured prior to transfusion were analysed among a cohort of 29 pediatric SCA patients receiving chronic transfusion therapy (CTT) for primary and secondary stroke prevention. A cross-sectional flow cytometric analysis of the reticulocyte phenotype was also performed. Mean duration of CTT was 3.1 ± 2.6 years. Fifteen subjects with magnetic resonance angiography (MRA) -vasculopathy had significantly higher mean ARC prior to initiating CTT compared to 14 subjects without MRA-vasculopathy (427.6 ± 109.0 K/μl vs. 324.8 ± 109.2 K/μl,

    An assessment of hepatitis E virus (HEV) in US blood donors and recipients: No detectable HEV RNA in 1939 donors tested and no evidence for HEV transmission to 362 prospectively followed recipients.

    Get PDF
    BACKGROUND: Hepatitis E virus (HEV) infection has become relevant to blood transfusion practice because isolated cases of blood transmission have been reported and because HEV has been found to cause chronic infection and severe liver disease in immunocompromised patients. STUDY DESIGN AND METHODS: We tested for immunoglobulin (Ig)G and IgM antibodies to the HEV and for HEV RNA in 1939 unselected volunteer US blood donors. Subsequently, we tested the same variables in pre- and serial posttransfusion samples from 362 prospectively followed blood recipients to assess transfusion risk. RESULTS: IgG anti-HEV seroprevalence in the total 1939 donations was 18.8%: 916 of these donations were made in 2006 at which time the seroprevalence was 21.8% and the remaining 1023 donations were in 2012 when the seroprevalence had decreased to 16.0% (p \u3c 0.01). A significant (p \u3c 0.001) stepwise increase in anti-HEV seroprevalence was seen with increasing age. Eight of 1939 donations (0.4%) tested anti-HEV IgM positive; no donation was HEV RNA positive. Two recipients had an apparent anti-HEV seroconversion, but temporal relationships and linked donor testing showed that these were not transfusion-transmitted HEV infections. CONCLUSION: No transfusion-transmitted HEV infections were observed in 362 prospectively followed blood recipients despite an anti-HEV seroprevalence among donations exceeding 16%

    Genomics in premature infants: A non-invasive strategy to obtain high-quality DNA

    Get PDF
    We used a cost-effective, non-invasive method to obtain high-quality DNA from buccal epithelial-cells (BEC) of premature infants for genomic analysis. DNAs from BEC were obtained from premature infants with gestational age ≤ 36 weeks. Short terminal repeats (STRs) were performed simultaneously on DNA obtained from the buccal swabs and blood from the same patient. The STR profiles demonstrated that the samples originated from the same individual and exclude any contamination by external DNAs. Whole exome sequencing was performed on DNAs obtained from BEC on premature infants with and without necrotizing enterocolitis, and successfully provided a total number of reads and variants corroborating with those obtained from healthy blood donors. We provide a proof of concept that BEC is a reliable and preferable source of DNA for high-throughput sequencing in premature infants

    Are Immune Modulating Single Nucleotide Polymorphisms Associated with Necrotizing Enterocolitis?

    Get PDF
    Necrotizing enterocolitis (NEC) is a devastating gastrointestinal emergency. The purpose of this study is to determine if functional single nucleotide polymorphisms (SNPs) in immune-modulating genes pre-dispose infants to NEC. After Institutional Review Board approval and parental consent, buccal swabs were collected for DNA extraction. TaqMan allelic discrimination assays and BglII endonuclease digestion were used to genotype specific inflammatory cytokines and TRIM21. Statistical analysis was completed using logistic regression. 184 neonates were analyzed in the study. Caucasian neonates with IL-6 (rs1800795) were over 6 times more likely to have NEC (p = 0.013; OR = 6.61, 95% CI 1.48-29.39), and over 7 times more likely to have Stage III disease (p = 0.011; OR = 7.13, (95% CI 1.56-32.52). Neonates with TGFβ-1 (rs2241712) had a decreased incidence of NEC-related perforation (p = 0.044; OR = 0.28, 95% CI: 0.08-0.97) and an increased incidence of mortality (p = 0.049; OR = 2.99, 95% CI: 1.01 - 8.86). TRIM21 (rs660) was associated with NEC-related intestinal perforation (p = 0.038; OR = 4.65, 95% CI 1.09-19.78). In premature Caucasian neonates, the functional SNP IL-6 (rs1800795) is associated with both the development and increased severity of NEC. TRIM21 (rs660) and TGFβ-1 (rs2241712) were associated with NEC- related perforation in all neonates in the cohort. These findings suggest a possible genetic role in the development of NEC

    NIH Workshop 2018: Towards Minimally Invasive or Noninvasive Approaches to Assess Tissue Oxygenation Pre- and Post-transfusion

    Get PDF
    Because blood transfusion is one of the most common therapeutic interventions in hospitalized patients, much recent research has focused on improving the storage quality in vitro of donor red blood cells (RBCs) that are then used for transfusion. However, there is a significant need for enhancing our understanding of the efficacy of the transfused RBCs in vivo. To this end, the NIH sponsored a one-and-a-half-day workshop that brought together experts in multiple disciplines relevant to tissue oxygenation (eg, transfusion medicine, critical care medicine, cardiology, neurology, neonatology and pediatrics, bioengineering, biochemistry, and imaging). These individuals presented their latest findings, discussed key challenges, and aimed to identify opportunities for facilitating development of new technologies and/or biomarker panels to assess tissue oxygenation in a minimally-invasive to non-invasive fashion, before and after RBC transfusion

    NIH Workshop 2018: Towards Minimally-invasive or Non-invasive Approaches to Assess Tissue Oxygenation Pre- and Post-Transfusion

    Get PDF
    Because blood transfusion is one of the most common therapeutic interventions in hospitalized patients, much recent research has focused on improving the storage quality in vitro of donor red blood cells (RBCs) that are then used for transfusion. However, there is a significant need for enhancing our understanding of the efficacy of the transfused RBCs in vivo. To this end, the NIH sponsored a one-and-a-half-day workshop that brought together experts in multiple disciplines relevant to tissue oxygenation (e.g., transfusion medicine, critical care medicine, cardiology, neurology, neonatology and pediatrics, bioengineering, biochemistry, and imaging). These individuals presented their latest findings, discussed key challenges, and aimed to construct recommendations for facilitating development of new technologies and/or biomarker panels to assess tissue oxygenation in a minimally-invasive to non-invasive fashion, before and after RBC transfusion. The workshop was structured into four sessions: (1) Global Perspective; (2) Organ Systems; (3) Neonatology; and (4) Emerging Technologies. The first day provided an overview of current approaches in the clinical setting, both from a global perspective, including the use of metabolomics for studying RBCs and tissue perfusion, and from a more focused perspective, including tissue oxygenation assessments in neonates and in specific adult organ systems. The second day focused on emerging technologies, which could be applied pre- and post-RBC transfusion, to assess tissue oxygenation in minimally-invasive or non-invasive ways. Each day concluded with an open-microphone discussion among the speakers and workshop participants. The workshop presentations and ensuing interdisciplinary discussions highlighted the potential of technologies to combine global “omics” signatures with additional measures (e.g., thenar eminence measurements or various imaging methods) to predict which patients could potentially benefit from a RBC transfusion and whether the ensuing RBC transfusion was effective. The discussions highlighted the need for collaborations across the various disciplines represented at the meeting to leverage existing technologies and to develop novel approaches for assessing RBC transfusion efficacy in various clinical settings. Although the Workshop took place in April, 2018, the concepts described and the ensuing discussions were, perhaps, even more relevant in April, 2020, at the time of writing this manuscript, during the explosive growth of the COVID-19 pandemic in the United States. Thus, issues relating to maintaining and improving tissue oxygenation and perfusion are especially pertinent because of the extensive pulmonary damage resulting from SARS-CoV-2 infection [1], compromises in perfusion caused by thrombotic-embolic phenomena [2], and damage to circulating RBCs, potentially compromising their oxygen-carrying capacity [3]. The severe end organ effects of SARS-CoV-2 infection mandate even more urgency for improving our understanding of tissue perfusion and oxygenation, improve methods for measuring and monitoring them, and develop novel ways of enhancing them
    • …
    corecore