4 research outputs found

    High performance dengue virus antigen-based serotyping-NS1-ELISA (plus): A simple alternative approach to identify dengue virus serotypes in acute dengue specimens.

    No full text
    Dengue hemorrhagic fever (DHF) is caused by infection with dengue virus (DENV). Four different serotypes (DENV1-4) co-circulate in dengue endemic areas. The viral RNA genome-based reverse-transcription PCR (RT-PCR) is the most widely used method to identify DENV serotypes in patient specimens. However, the non-structural protein 1 (NS1) antigen as a biomarker for DENV serotyping is an emerging alternative method. We modified the serotyping-NS1-enzyme linked immunosorbent assay (stNS1-ELISA) from the originally established assay which had limited sensitivity overall and poor specificity for the DENV2 serotype. Here, four biotinylated serotype-specific antibodies were applied, including an entirely new design for detection of DENV2. Prediction of the infecting serotype of retrospective acute-phase plasma from dengue patients revealed 100% concordance with the standard RT-PCR method for all four serotypes and 78% overall sensitivity (156/200). The sensitivity of DENV1 NS1 detection was greatly improved (from 62% to 90%) by the addition of a DENV1/DENV3 sub-complex antibody pair. Inclusive of five antibody pairs, the stNS1-ELISA (plus) method showed an overall increased sensitivity to 85.5% (171/200). With the same clinical specimens, a commercial NS1 rapid diagnostic test (NS1-RDT) showed 72% sensitivity (147/200), significantly lower than the stNS1-ELISA (plus) performance. In conclusion, the stNS1-ELISA (plus) is an improved method for prediction of DENV serotype and for overall sensitivity. It could be an alternative assay not only for early dengue diagnosis, but also for serotype identification especially in remote resource-limited dengue endemic areas

    Blockade-of-Binding Activities toward Envelope-Associated, Type-Specific Epitopes as a Correlative Marker for Dengue Virus-Neutralizing Antibody

    No full text
    ABSTRACT Humans infected with dengue virus (DENV) acquire long-term protection against the infecting serotype, whereas cross-protection against other serotypes is short-lived. Long-term protection induced by low levels of type-specific neutralizing antibodies can be assessed using the virus-neutralizing antibody test. However, this test is laborious and time-consuming. In this study, a blockade-of-binding enzyme-linked immunoassay was developed to assess antibody activity by using a set of neutralizing anti-E monoclonal antibodies and blood samples from dengue virus-infected or -immunized macaques. Diluted blood samples were incubated with plate-bound dengue virus particles before the addition of an enzyme-conjugated antibody specific to the epitope of interest. Based on blocking reference curves constructed using autologous purified antibodies, sample blocking activity was determined as the relative concentration of unconjugated antibody that resulted in the same percent signal reduction. In separate DENV-1-, -2-, -3-, and -4-related sets of samples, moderate to strong correlations of the blocking activity with neutralizing antibody titers were found with the four type-specific antibodies 1F4, 3H5, 8A1, and 5H2, respectively. Significant correlations were observed for single samples taken 1 month after infection as well as samples drawn before and at various time points after infection/immunization. Similar testing using a cross-reactive EDE-1 antibody revealed a moderate correlation between the blocking activity and the neutralizing antibody titer only for the DENV-2-related set. The potential usefulness of the blockade-of-binding activity as a correlative marker of neutralizing antibodies against dengue viruses needs to be validated in humans. IMPORTANCE This study describes a blockade-of-binding assay for the determination of antibodies that recognize a selected set of serotype-specific or group-reactive epitopes in the envelope of dengue virus. By employing blood samples collected from dengue virus-infected or -immunized macaques, moderate to strong correlations of the epitope-blocking activities with the virus-neutralizing antibody titers were observed with serotype-specific blocking activities for each of the four dengue serotypes. This simple, rapid, and less laborious method should be useful for the evaluation of antibody responses to dengue virus infection and may serve as, or be a component of, an in vitro correlate of protection against dengue in the future
    corecore